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In this paper, we prove the uniqueness theorem for a special class of meromorphic functions
on the complex plane C. In particular, we study the class of meromorphic functions f in the
domain C\K ′, where K ′ is the finite set of limit points of simple poles of the function f . In this
class, we describe non-trivial subclasses in which every function f can be uniquely determined
by the residues of the function f at its poles. The result covered in this paper is a part of a
problem in a spectral operator theory.

1. Introduction. When studying the reflectionless Jacobi operators [1–3], the authors
encountered the following problem. Let B1 and B2 be Blaschke products in the unit disc
D := {z ∈ C : |z| < 1}, i.e.,

Bs(z) :=
∏
j∈N

bλj,s
(z), bλ(z) :=

|λ|
λ

· λ− z

1− λ̄z
(s ∈ {1, 2})

with zeros λj,s satisfying the Blaschke condition (see [4–7])∑
j∈N

(1− |λj,s|) < ∞

and {λj,1}j∈N ∩ {λj,2}j∈N = ∅. We assume that these zeros are simple and lie in the set
(−1, 1) \ {0}. Clearly, the function

f(z) :=
B1(z)

B2(z)
(1)

is meromorphic in C \ {−1; 1} and has only simple poles.

Problem 1. Let f be the above meromorphic function, and
rf (λ) := res

z=λ
f(z), λ ∈ R \ {−1; 1}.

Are the Blaschke products B1 and B2 uniquely determined by the function rf and the number
f(0)?

In this paper, we prove a result that leads to a positive answer to the question formulated
above. Note that Problem 1 is a special case of a more general problem. To formulate the
main result, let us introduce some definitions.

Let k = (kj)j∈N and λ = (λj)j∈N be sequences in C. The pair (k,λ) is called regular if
the following conditions hold:
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1) the sequences k and λ are bounded and
∑

j∈N |λj − kj| < ∞;
2) kj ̸= ks if j ̸= s;
3) the set K ′ of the limit points of the set K = {kj}j∈N is finite;
4) K ∩K ′ = ∅ and {λj}j∈N ∩K = ∅.

Each regular pair (k,λ) generates the function

f(z) :=
∞∏
j=1

z − λj

z − kj
, (2)

which is meromorphic in the domain C \ K ′. In view of the relation z−λj

z−kj
− 1 =

kj−λj

z−kj
and

convergence of the series
∑

j∈N |λj − kj|, the product (2) converges uniformly on compact
subsets of C not intersecting with K ′ ∪K and tends to 1 as |z| → ∞.

We denote by F the set of all functions f generated by the regular pairs via (2). Denote
by P (f) := {kj}j∈N and Z(f) := {λj}j∈N the sets of poles and zeros of the function f ∈ F .
For every finite non-empty set A ⊂ C, we put

F(A) := {f ∈ F : (P (f))′ = A}. (3)

Here and hereafter, X ′ is the set of limit points of X ⊂ C.
For every function f ∈ F(A), the equality

rf (λ) = lim
z→λ

(z − λ)f(z), λ ∈ C \ A (4)
holds.

The main problem of this paper is to find non-trivial subclasses in F(A) in which every
function f is uniquely determined by the function rf . In other words, we study the problem
of finding subclasses B ⊂ F(A) for which the mapping B ∋ f 7→ rf is injective.

Note that the mapping F(A) ∋ f 7→ rf is not injective. Indeed, let us consider for
simplicity the case A = {0}. Take two meromorphic Herglotz functions

f1(z) = 1 +
∞∑
j=1

aj
kj − z

, f2(z) = f1(z)−
a0
z
,

where (kj)∞j=1 is a strictly decreasing sequence of positive numbers converging to 0 and (aj)
∞
j=0

is a sequence of positive numbers belonging to ℓ1(Z+). With an appropriate enumeration, the
zeros λj,s of the functions fs form strictly decreasing sequences of positive numbers converging
to zero, moreover, λj+1,1 < λj+1,2 < kj < λj,1 < λj,2, j ∈ N. It is known (see [8], [9]) that the
functions fs can be represented as

fs(z) =
∞∏
j=1

z − λj,s

z − kj
, z ∈ C \ {0}.

Obviously, f1, f2 ∈ F(A), in particular, rf1 = rf2 and f1 ̸= f2.
We denote by F1(A) the set of all functions f ∈ F(A) for which the sequence k = (kj)j∈N

from the regular pair generating f possesses the property∑
j∈N

d(kj, A) < ∞, where d(x,A) := min
a∈A

|x− a|. (5)

Let A be a finite non-empty set and φ : A → [0, π]. Denote by F1(A,φ) the set of all
f ∈ F1(A) which possess the following property (A,φ):

(∀a ∈ A) : lim
R∋t→0

|f(a+ teiφ(a))| < ∞.

The main result of this paper is:

Theorem 1. Every function f ∈ F1(A,φ) is uniquely determined in the class F1(A,φ) by
the function rf .
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Using Theorem 1, we will prove the following theorem.

Theorem 2. Let the function f be defined by formula (1). Then the Blaschke products B1

and B2 from formula (1) are uniquely determined by the function rf and the number f(0).

This paper is organized as follows. In Section 2, we introduce some modifications of
well-known results of the theory of analytic functions. In Section 3, we present the proof of
Theorem 1, and in Section 4, we prove Theorem 2.

2. Some auxiliary results. We denote by Ω the domain
Ω := Ω(α, β) := {z ∈ C : |z| > 1, α < arg z < β} (−π ≤ α < β< π).

We also denote by A(Ω) the algebra of all functions that are analytic in Ω and continuous
in the closure Ω. Put by definition

Mf (r,Ω) := max
α≤θ≤β

|f(reiθ)|, r ≥ 1, f ∈ A(Ω),

and call the order ρf and the type σf of a function f ∈ A(Ω) in a domain Ω the values

ρf := lim
r→∞

ln lnMf (r,Ω)

ln r
, σf := lim

r→∞

lnMf (r,Ω)

rρ
, ρ = ρf .

Define Aρ,σ(Ω) := {f ∈ A(Ω) : ρf ≤ ρ, σf ≤ σ}, ρ, σ ∈ [0,∞]). We also denote by A the
algebra of all entire functions and put

Aρ,σ := A ∩Aρ,σ(Ω(−π, π)).
Note that A1,0 and A1,0(Ω) are also algebras of functions.

Lemma 1. Let f ∈ A(Ω), g ∈ A1,0 and g(0) ̸= 0. If fg ∈ A1,0(Ω), then f ∈ A1,0(Ω).

Lemma 2. Let f ∈ A1,0(Ω), where Ω = Ω(α, β) and β − α ≤ π. If f is bounded on ∂Ω,
then it is bounded in Ω.

The proofs of Lemmas 1 and 2 with slight and obvious modifications repeat the main
ideas of proofs of Theorems 12 and 22 in [8, Ch. I]. We only give the proof of Lemma 1.

The proof of Lemma 1. Assume that f /∈ A1,0(Ω). Then there exist η > 0 and a sequence
(rn)n∈N of positive numbers such that rn → ∞ as n → ∞ and Mf (rn,Ω) > e4ηrn , n ∈ N.

Since g ∈ A1,0 and g(0) ̸= 0, the theorem on lower bounds for the modulus of an enti-
re function (see [8, Theorem 11, Ch. I, Pt. 8]) implies that there exists n0 such that for
an arbitrary integer number n > n0 in the interval [rn, 2rn] there exists a number τn such
that

min
|z|=τn

|g(z)| > e−ητn .

Then Mfg(τn,Ω) > Mf (τn,Ω)e
−ητn ≥ e4ηrne−ητn ≥ eητn . It means that fg /∈ A1,0. We get

a contradiction and thus f ∈ A1,0(Ω).

3. The proof of Theorem 1. Assume that there exist functions f1, f2 ∈ F1(A,φ) such
that rf1 = rf2 . Then P (f1) = P (f2). Thus, the functions fs can be represented as

fs(z) =
∞∏
j=1

z − λj,s

z − kj
, z ∈ C \ A, s ∈ {1, 2}.

We consider the function f(z) := f1(z) − f2(z). Obviously, this function can be uniquely
extended by continuity to a function that is analytic in C \ A and has zero at infinity. It
suffices to prove that the function f is bounded in the neighborhood of each point a ∈ A.
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Indeed, in this case the function f can be extended to an entire function that is bounded and
has zero at infinity. Thus, in view of Liouville’s Theorem, the function f vanishes identically,
and, hence, f1 = f2.

Fix an arbitrary a ∈ A. It follows from the definitions that

lim
R∋t→0

|f(a+ teiφ(a))| < ∞.

Thus, ∃δ > 0 such that supz∈I(δ) |f(z)| < ∞, where I(δ) := {a+ teiφ(a) : t ∈ (−δ, δ) \ {0}}.
Let U = {z ∈ C : 0 < |z − a| < δ} and K = {kj}j∈N. Choosing δ small enough, we can get
that the following conditions hold:
1) A ∩ U = ∅; 2) the distance from U to the set K \ U is positive.

Consider the following functions in the domain U :

gs(z) :=
∏

kj∈K\U

z − λj,s

z − kj
, hs(z) :=

∏
kj∈U

(
1− λj,s − a

z − a

)
, p(z) :=

∏
kj∈U

(
1− kj − a

z − a

)
.

It follows from the definitions that∑
kj∈U

|λj,s − a| < ∞,
∑
kj∈U

|kj − a| < ∞.

Thus, the functions hs and p are well defined. It is easy to see that the functions gs, hs and
p are analytic in U and

f(z) =
h1(z)g1(z)− h2(z)g2(z)

p(z)
, z ∈ U.

Moreover, the functions gs are bounded on U. We consider the linear fractional function

θ(ζ) = a+
eiφ(a)δ

ζ
and put by the definition Gs = gs ◦ θ, Hs = hs ◦ θ, P = p ◦ θ, F = f ◦ θ. Since θ maps the
domain V := C \ D = {z ∈ C : |z| > 1} into U , the functions Gs, Hs, P and F are analytic
in V . Obviously, they are also continuous on V . Therefore, all these functions belong to
the algebra A(V ). Moreover, in view of condition supz∈I(δ) |f(z)| < ∞, such a supremum
sup{|F (t)| : t ∈ R \ (−1, 1)} < ∞ is also finite. It implies that

sup
z∈∂V ±

|F (z)| < ∞, V + := {z ∈ C : Im z > 0, |z| > 1}, V − := {z ∈ C : Im z < 0, |z| > 1}.

Moreover, the functions Gs are bounded on V and the equality

F (ζ) =
H1(ζ)G1(ζ)−H2(ζ)G2(ζ)

P (ζ)
, ζ ∈ V ,

holds. To complete the proof, we only need to show that F is bounded on V .
Note that the functions Hs and P can be represented in the form

Hs(ζ) :=
∏
j∈N

(1− νj,sζ), P (ζ) :=
∏
j∈N

(1− µjζ),

where
∑
j∈N

|νj,s| < ∞,
∑
j∈N

|µj| < ∞. Thus (see [10, Theorem 7, Ch. II, Pt. I, Sec.4] ) the

functions Hs and P are entire functions of exponential type zero, i.e., they belong to the
algebra A1,0, and, hence, belong to A1,0(V ) as well. Since the functions Gs are bounded
on V , they belong to A1,0(V ) too. It follows that the function H = H1G1 − H2G2 belongs
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to the algebra A1,0(V ) and P ∈ A1,0. Since FP = H ∈ A1,0(V ) and F ∈ A(V ), then in
view of Lemma 1, F ∈ A1,0(V ). In particular, F ∈ A1,0(V

±). Thus, taking into account the
condition sup

z∈∂V ±
|F (z)| < ∞ and Lemma 2, we get that F is bounded in V + and V −, and

hence, F is bounded in V . Therefore, Theorem 1 is proved.

4. The proof on Theorem 2. Let (k,λ) be a regular pair, and the sequences λ = (λj)j∈N
and k = (kj)j∈N are real-valued. We say that the sequence λ is subordinated to the sequence
k (denoted as λ ≺ k), if there exists a sequence (cj)j∈N ∈ ℓ1(N) of positive numbers such
that d(λj, A) ≤ (1 + cj)d(kj, A), j ∈ N.

Lemma 3. Let f ∈ F1(A) be generated by a regular pair (k,λ) and λ ≺ k. Then the function
f satisfies the condition (A,φ) with φ ≡ π/2, i.e., f ∈ F1(A,φ).

Proof. Let the conditions of the lemma be satisfied. We show that it suffices to prove the
lemma for the case, when A is a singleton. Indeed, assume that in this case the lemma has
been proved and A = {as}ps=1. Clearly, N can be represented as the union of the disjoint sets
Ns = {ns,j}j∈N, s ∈ {1, . . . , p}, such that for every s :

1) the sequence (ns,j)j∈N is strictly increasing;

2) the sequences ks := (kns,j
)j∈N and λs := (λns,j

)j∈N converge to as;

3) the pair (ks,λs) is regular and λs ≺ ks.

Denote by fs the function from F1({as}) generated by the pair (ks,λs). By conjecture,

lim
R∋t→0

|fs(as + it)| < ∞, s ∈ {1, . . . , p}. Clearly, f =
p∏

s=1

fs and every function fs is bounded

in the neighborhood of each point am with m ̸= s. Thus, we get that lim
R∋t→0

|f(as + it)| < ∞,

s ∈ {1, . . . , p}, thus the condition (A,φ) holds for f with φ ≡ π/2 .
Let A = {a} be a singleton. By definition, the sequences λ and k are real-valued. Thus,

a ∈ R. In our case, the condition λ ≺ k means that there exists a sequence (cj)j∈N ∈ ℓ1(N)
of positive numbers such that |a−λj |

|a−kj | ≤ 1 + cj, j ∈ N. Note that for every y ∈ R \ {0} and
every j ∈ N, if |a− λj| ≤ |a− kj|, then∣∣∣∣a− λj + iy

a− kj + iy

∣∣∣∣2 = |a− λj|2 + y2

|a− kj|2 + y2
≤ 1 ≤ (1 + cj)

2,

and if |a− λj| > |a− kj|, then∣∣∣∣a− λj + iy

a− kj + iy

∣∣∣∣2 = |a− λj|2 + y2

|a− kj|2 + y2
≤ |a− λj|2

|a− kj|2
≤ (1 + cj)

2.

Then for every y ∈ R \ {0} and every j ∈ N the inequality
∣∣∣∣a− λj + iy

a− kj + iy

∣∣∣∣ ≤ 1 + cj holds.

Therefore,

|f(a+ iy)| =
∏
j∈N

∣∣∣∣a− λj + iy

a− kj + iy

∣∣∣∣ ≤ ∏
j∈N

(1 + cn) =: c < ∞, y ∈ R \ {0}.

Hence, the condition (A,φ) with φ ≡ π/2 holds.

The proof of Theorem 2. Let A := {−1; 1}, Bs(z) :=
∏
j∈N

bλj,s
(z), s ∈ {1, 2}, and the zeros

λj,s of the Blaschke products Bs are simple, lie in the set (−1, 1) \ {0} and {λj,1}j∈N ∩
{λj,2}j∈N = ∅. It is clear that the condition

∑
j∈N

(1 − |λj,s|) < ∞, s ∈ {1, 2}, holds as well.
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Let us define the sequences k = {kj}j∈N and λ = {λj}j∈N by the formulas k2j−1 := λ−1
j,1 ,

k2j := λj,2, λj := k−1
j . Obviously, the pair (k,λ) is regular. Moreover, since

∣∣∣∣1− |λj|
1− |kj|

∣∣∣∣ =

=

∣∣∣∣1− |kj|−1

1− |kj|

∣∣∣∣ = |kj|−1 ≤ 1 + |1− |kj|−1| and
∞∑
j=1

|1− |kj|−1| < ∞, we obtain that λ ≺ k.

Let h is a function from F(A) generated by the pair (k,λ). Taking into account Lemma 3,
we get h ∈ F1(A,φ). Thus, in view of Theorem 1, the function h is uniquely determined by
the function rh. It is easy to see that the function f := B1

B2
(see (1)) is related to h by the

formulas h = f(0)f, rh = f(0)rf . Therefore, the function f is uniquely determined by the
function rf and the number f(0). Since all poles of the function f are simple, the Blaschke
products B1 and B2 can be uniquely reconstructed by the set P (f). Theorem 2 is proved.
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