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In the paper the properties of infinite locally finite groups with non-Dedekind locally nil-
potent norms of Abelian non-cyclic subgroups are studied. It is proved that such groups are
finite extensions of a quasicyclic subgroup and contain Abelian non-cyclic p-subgroups for a
unique prime p. In particular, in the paper is prove the following assertions:

1) Let G be an infinite locally finite group and contain the locally nilpotent norm NA
G with

the non-Hamiltonian Sylow p-subgroup (NA
G )p. Then G is a finite extension of a quasicyclic

p-subgroup, all Sylow p′-subgroups are finite and do not contain Abelian non-cyclic subgroups.
In particular, Sylow q-subgroups (q is an odd prime, q ∈ π(G), q ̸= p) are cyclic, Sylow 2-
subgroups (p ̸= 2) are either cyclic or finite quaternion 2-groups (Theorem 1).

2) Let G be a locally finite non-locally nilpotent group with the infinite locally nilpotent
non-Dedekind norm NA

G of Abelian non-cyclic subgroups. Then G = Gp ⋋H, where Gp is an
infinite HAp-group of one of the types (1)–(4) of Proposition 2 in present paper, which coincides
with the Sylow p-subgroup of the norm NA

G , H is a finite group, all Abelian subgroups of which
are cyclic, and (|H|, p) = 1. Any element h ∈ H of odd order that centralizes some Abelian
non-cyclic subgroup M ⊂ NA

G is contained in the centralizer of the norm NA
G . (Theorem 2).

3) Let G be an infinite locally finite non-locally nilpotent group with the finite nilpotent
non-Dedekind norm NA

G of Abelian non-cyclic subgroups. Then G = H ⋋ K, where H is a
finite group, all Abelian subgroups of which are cyclic, (|H| , 2) = 1, K is an infinite 2-group
of one of the types (5)–(6) of Proposition 2 (in present paper). Moreover, the norm NA

K of
Abelian non-cyclic subgroups of the group K is finite, K ∩NA

G = NA
K and coincides with the

Sylow 2-subgroup (NA
G )2 of the norm NA

G of a group G. Moreover, any element h ∈ H of the
centralizer of some Abelian non-cyclic subgroup M ⊂ NA

G is contained in the centralizer of the
norm NA

G . (Theorem 4).

1. Introduction. The year 1935, when R. Baer first introduced the norm of a group, marked
the beginning of a new direction in group theory research. According to [1], the norm N(G)
of a group G is the intersection of the normalizers of all subgroups of a group. Since the norm
N(G) normalizes all subgroups of a group, all subgroups are normal in N(G). If a group
coincides with its norm N(G), then all subgroups are normal in a group. The structure of
such groups was known at that time. These are so-called Dedekind groups, which are either
Abelian or Hamiltonian. The innovation of R. Baer was that he began to investigate the case
when the norm N(G) is a proper subgroup of a group G.
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Generalizing the problem formulated by R. Baer, let’s consider a system Σ of subgroups
of a group G that possess some theoretical group property. Accordingly, the Σ-norm of a
group G is defined as the intersection of the normalizers of all subgroups from the system Σ
in a group G. It is clear that the norm of a group is contained in all other Σ-norms, which,
in turn, can be considered as its generalizations.

It is evident that in a group, which coincides with its Σ-norm, all subgroups from Σ are
normal (under the condition that the system of such groups is non-empty). Groups with
systems Σ of normal subgroups were studied quite actively since the end of the 19th century.
Under these conditions the structure and properties of many natural systems Σ of subgroups
(in particular, the system Σ of all subgroups of a group, all non-cyclic subgroups, all non-
cyclic Abelian subgroups, infinite Abelian subgroups, infinite cyclic subgroups, non-Abelian
subgroups, etc.) were described. In this regard, it would be natural to raise the question of
studying the properties of groups with the proper Σ-norm, which satisfies some restrictions.

This research direction proved to be so fruitful that algebraists often turned to studying
groups with restrictions on various Σ-norms (see, for example, [4–6], [11–23], [25]). In this
article, one of these generalized norms – the norm of Abelian non-cyclic subgroups of a group
– and its impact on the properties of a group under certain restrictions are considered.

The norm NA
G of Abelian non-cyclic subgroups of a group G is defined as the intersection

of the normalizers of all Abelian non-cyclic subgroups of a group, provided that the system
of such subgroups is non-empty (see [21]). If the norm NA

G contains at least one Abelian
non-cyclic subgroup, then all such subgroups are normal in NA

G . Non-Abelian groups with
this property were characterized by F. Lyman [10] and called HA-groups (accordingly, HAp-
groups, if they are p-groups). Thus, if the norm of Abelian non-cyclic subgroups contains an
Abelian non-cyclic subgroup, then it is either Dedekind or a non-Hamiltonian HA-group.

The study of the properties of the norm of Abelian non-cyclic subgroups, its impact on the
properties of a group and its relations with other generalized norms under given restrictions
were considered in findings [12,13], [16,17], [19], [21–23]. The non-Dedekindness of the norm of
a group was chosen as a defining restriction. In particular, in the findings [21–23] locally finite
p-groups were studied, while in [17] torsion locally nilpotent groups that contain an Abelian
non-cyclic subgroup and have the non-Dedekind norm of Abelian non-cyclic subgroups were
considered. Under the additional condition of infiniteness such groups are finite extensions
of a quasicyclic subgroup.

In the findings [12, 13] the relations between the norm NA
G of Abelian non-cyclic sub-

groups and the norm Nd
G of decomposable subgroups of a group were studied in locally finite

and non-periodic locally-by-solvable groups. It was proved that under these restrictions one
of the inclusions NA

G ⊇ Nd
G or Nd

G ⊇ NA
G holds (Theorem 1.2 and 1.3 [12]).

The paper purpose is to study properties of infinite locally finite groups with the locally
nilpotent non-Dedekind norm of Abelian non-cyclic subgroups.

As will be shown further, all such groups are finite extensions of a quasicyclic subgroup
and contain Abelian non-cyclic p-subgroups for a unique prime p. Moreover, such subgroups
are semidirect products of an infinite Sylow p-subgroup, which is either coincides with a
Sylow p-subgroup of the norm NA

G or contains it, and a finite group, all Abelian subgroups
of which are cyclic.

2. Preliminary results. The intersection of normalizers of all Abelian non-cyclic subgroups
of a group G under the condition that the system of such subgroups is non-empty is called
the norm NA

G of Abelian non-cyclic subgroups of a group G.
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If a group G does not contain Abelian non-cyclic subgroups, then we will claim that
G = NA

G . But, only groups, which contain at least one Abelian non-cyclic subgroup, will
be considered further. Clearly, this condition holds for infinite locally finite groups because
such groups contain an infinite (so non-cyclic) Abelian subgroup by the Kargapolov-Hall-
Kulatilaka theorem (see [7, 8]).

In a group G that contains an Abelian non-cyclic subgroup and coincides with the norm
NA

G of Abelian non-cyclic subgroups all Abelian non-cyclic subgroups are normal, so it is
either Dedekind or a non-Hamiltonian HA-group. Properties and the structure of torsion
non-primary locally nilpotent HA-groups are described in the following proposition.

Proposition 1 ([10]). A torsion locally nilpotent non-Hamiltonian group G is a HA-group
if and only if G = Gp × B, where Gp is a Sylow p-subgroup of a group G, which is non-
Hamiltonian HAp-group, B is a finite Dedekind p′-group, all Abelian subgroups of which are
cyclic.

Thus, if the norm NA
G of Abelian non-cyclic subgroups is non-Dedekind, contains an

Abelian non-cyclic subgroup and is a locally nilpotent HA-group, then it is of the structure
mentioned in Proposition 1. But, the subgroup NA

G can contain no Abelian non-cyclic
subgroups. The example of such a group is the infinite torsion Frobenius group mentioned
in [2] (Example 3.4), where NA

G = E.
Let’s prove that the norm NA

G is a non-Hamiltonian HA-group mentioned in Proposition 1
by its non-Dedekindness and locally nilpotency in the class of infinite locally finite groups.

Lemma 1. If the norm NA
G of Abelian non-cyclic subgroups of an infinite locally finite group

G is non-Dedekind and locally nilpotent, then it is a non-Hamiltonian HA-group.

Proof. Let group G and its norm NA
G of Abelian non-cyclic subgroups satisfy lemma condi-

tions. If NA
G contains Abelian non-cyclic subgroups, then they are normal in it and in this

case NA
G is a non-Hamiltonian HA-group.

Suppose that NA
G does not contain Abelian non-cyclic subgroups. Since NA

G is locally
nilpotent, by Proposition 1.4 [3] it is the direct product of its Sylow p-subgroups. By the
non-Dedekindness of NA

G , Lemma 3 [17] and the assumption, NA
G is the direct product of a

finite quaternion 2-group Q of order greater than 8 and a cyclic Sylow 2′-subgroup ⟨h⟩:
NA

G = Q× ⟨h⟩,
where Q = ⟨a⟩⟨b⟩, |a| = 2n, n ≥ 3, |b| = 4, a2n−1

= b2, b−1ab = a−1, |h| = m, (m, 2) = 1.
Since G is infinite, it contains an infinite Abelian subgroup A (see for instance [9] p. 499).

Let’s prove that A satisfies the minimal condition for Abelian subgroups. Indeed, it contains
the direct product M of infinitely many subgroups of prime order. Hence, |NA

G ∩M | < ∞.
Let NA

G ∩ M = M1. Then M = M1 × M2, where |M2| = ∞. Since NA
G ∩ M2 = E, by

Lemma 2 [17] the norm NA
G must be Dedekind, which contradicts the condition. Therefore,

A is a group satisfying the minimal condition for Abelian subgroups (and by [24] for all
subgroups), hence, it is a finite extension of the direct product of a finitely many quasicyclic
subgroups.

Let the divisible part of the subgroup A denote by P . Then P is the direct product
of quasicyclic subgroups. By

∣∣NA
G

∣∣ < ∞, NA
G ◁ G, it follows that

∣∣G : CG(N
A
G )

∣∣ < ∞ and
P ⊂ CG(N

A
G ). Therefore, P is contained in the center of the group G1 = P · NA

G . By
Lemma 1 [17] G1 = NA

G1
and G1 is a non-Hamiltonian HA-group. By the description of

non-Hamiltonian HA-groups (see [10]), we conclude that P is a quasicyclic p-group.
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Since by Lemma 1 [17] NA
G ∩ P ̸= E and NA

G contains a generalized quaternion group,
contrary to the description of HA-groups [10]. Therefore, a group does not contain infinite
Abelian subgroups, which is impossible. Thus, this case does not occur and the norm NA

G

contains Abelian non-cyclic subgroups, i.e. it is a non-Hamiltonian locally nilpotent HA-
group. The lemma is proved.

According to Lemma 1, the condition of the existence of Abelian non-cyclic subgroups in
infinite locally finite group is equivalent to the condition of the existence of such subgroups in
its norm NA

G with the additional restriction of the non-Dedekindness and locally nilpotency
of the norm.

Corollary 1. An infinite locally finite group G with the non-Dedekind locally nilpotent
norm NA

G of Abelian non-cyclic subgroups contains Abelian non-cyclic subgroups if and only
if its norm NA

G contains such subgroups.

Proof. The sufficiency of the corollary conditions is evident. The necessity follows from
Lemma 1 because the norm NA

G is a non-Hamiltonian HA-group and contains Abelian non-
cyclic subgroups.

Note that the similar statement was proved earlier for torsion locally nilpotent groups
with the non-Dedekind norm NA

G in [17].
Taking into account Lemma 1 and the definition of the norm NA

G of Abelian non-cyclic
subgroups of a group, the study of the properties of infinite locally finite groups with the
non-Dedekind locally nilpotent norm NA

G will be provided under the condition that NA
G is a

non-Hamiltonian locally nilpotent HA-group.
The following statement are needed for the sequel. It follows from Proposition 1 and 3 [17].

Proposition 2. Any infinite locally finite p-group (p is a prime) G has the non-Dedekind
norm NA

G if and only if it is a group of one of the following types:
1) G = (A×⟨b⟩)⋋ ⟨c⟩, A is a quasi-cyclic p-group, |b| = |c| = p, [A, ⟨c⟩] = E, [b, c] = a1 ∈ A,
|a1| = p;
2) G = A⟨b⟩, A is a quasicyclic 2-group, |b| = 4, b2 ∈ A, b−1ab = a−1 for any element a ∈ A;
3) G = A⟨b⟩, A is a quasicyclic 2-group, |b| = 8, b4 ∈ A, b−1ab = a−1 for any element a ∈ A;
4) G = A×H, A is a quasicyclic 2-group, H = ⟨h1, h2⟩, |h1| = |h2| = 4, h2

1 = h2
2, [h1, h2] = h2

1;
5) G = (A×⟨b⟩)⋋⟨c⟩⋋⟨d⟩, where A is a quasicyclic 2-group, |b| = |c| = |d| = 2, [A, ⟨ c⟩] = E,
[b, c] = [b, d] = [c, d] = a1 ∈ A, |a1| = 2, d−1ad = a−1 for any element a ∈ A; NA

G =
(⟨a2⟩ × ⟨b⟩)⋋ ⟨c⟩, a2 ∈ A, |a2| = 4;
6) G = (A ⟨y⟩)Q, where A is a quasicyclic 2-group, [A,Q] = E, Q = ⟨q1, q2⟩, |q1| = 4, q21 =
q22 = [q1, q2], |y| = 4, y2 = a1 ∈ A, y−1ay = a−1 for any element a ∈ A, [⟨y⟩ , Q] ⊆ ⟨a1⟩×⟨q21⟩;
NA

G = ⟨a2⟩ ×Q, a2 ∈ A, |a2| = 4.

Proposition 2 implies the following corollaries.

Corollary 2. If the norm NA
G of Abelian non-cyclic subgroups of a locally finite p-group (p

is a prime) G is infinite and non-Dedekind, then it coincides with a group, i.e. NA
G = G, and

is a group of one of the types (1)–(4) of Proposition 2.

Corollary 3. If an infinite locally finite p-group (p is a prime) G has the non-Dedekind
norm NA

G of Abelian non-cyclic subgroups and a central quasicyclic subgroup, then NA
G = G

and G is a group of one of the types (1) or (4) of Proposition 2.
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The following theorem describes the properties of infinite locally finite groups with the
non-Dedekind locally nilpotent norm NA

G .

Theorem 1. Let G be an infinite locally finite group and contain the locally nilpotent norm
NA

G with the non-Hamiltonian Sylow p-subgroup (NA
G )p. Then G is a finite extension of a

quasicyclic p-subgroup, all Sylow p′-subgroups are finite and do not contain Abelian non-
cyclic subgroups. In particular, Sylow q-subgroups (q is an odd prime, q ∈ π(G), q ̸= p) are
cyclic, Sylow 2-subgroups (p ̸= 2) are either cyclic or finite quaternion 2-groups.

Proof. Let a group G and its norm NA
G satisfy the theorem conditions. Then by Lemma 1

NA
G is a non-Dedekind locally nilpotent HA-group. By Proposition 1, NA

G = (NA
G )p × B,

where (NA
G )p is Sylow p-subgroup of the norm, which is a non-Hamiltonian HAp-group, B

is a finite Dedekind group, all Abelian subgroups of which are cyclic and (|B|, p) = 1. By
the description of non-Hamiltonian HAp-groups (see for instance Proposition 1 [17]), NA

G is
either finite or a finite extension of a quasicyclic p-subgroup for a prime p ∈ π(G).

Let Gp′ be an arbitrary Sylow p′-subgroup of a group G. Let’s prove that all Abelian
subgroups of the group Gp′ are cyclic. Indeed, let A ≤ Gp′ be an Abelian non-cyclic subgroup.
Since (NA

G )p is characteristic and A is NA
G -admissible, [⟨x⟩ , A] ⊆ (NA

G )p ∩ A = E for any
element x ∈ (NA

G )p. Taking into account that ⟨x,A⟩ = ⟨x⟩ × A is Abelian non-cyclic and
NA

G -admissible, we get ⟨x,A⟩ ∩ (NA
G )p = ⟨x⟩ � (NA

G )p. But in this case (NA
G )p is Dedekind,

which contradicts the condition. Therefore, all Abelian p′-subgroups of a group G are cyclic.
Since Gp′ does not contain infinite Abelian subgroups, by the Kargapolov-Hall-Kulatilaka

theorem (see [7], [8]) Gp′ is a finite group and by the proved above all its Abelian subgroups
are cyclic. By these it follows that all Sylow q-subgroups of a group G (q ∈ π(G), q ̸= p)
are cyclic for odd primes, Sylow 2-subgroups (p ̸= 2) are either cyclic or finite quaternion
2-groups.

Let’s prove that G satisfies the minimal condition for Abelian subgroups. Suppose the
converse. Then G contains an Abelian subgroup A, which is the direct product if infinitely
many subgroups of prime order. Let A1 = NA

G ∩A. Then |A1| < ∞ and A = A1 ×A2, where
|A2| = ∞ and NA

G ∩ A2 = E. By Lemma 2 [17] the norm NA
G must be Dedekind, which

contradicts the condition. Therefore, G is a group with the minimal condition for Abelian
subgroups, moreover, by [24] for all subgroup, and is Chernikov group. But then G is a finite
extension of divisible Abelian subgroup P .

Since all Sylow q-subgroup of a group G (q ̸= p) are either cyclic or quaternion 2-groups
by the proved above, P is the direct product of finitely many quasicyclic p-subgroups.

Let P ⊇ (A1 × A2), where A1 and A2 are quasicyclic p-subgroups. Since
NA

G �G1 = (A1 × A2) ·NA
G

and G1/N
A
G is a divisible Abelian subgroup, by Theorem 1.16 [3] the center of G1 contains

a divisible Abelian subgroup A such that |A ∩ NA
G | < ∞ and G1 = A · NA

G . Thus, G1 is a
locally nilpotent group with the infinite center. By Lemma 1 [17] G1 is a HA-group, so by
the description of such groups (see [10]), we conclude that P = A is a quasicyclic p-subgroup,
which is the maximal divisible subgroup of a group G. The theorem is proved.

Corollary 4. If the norm of Abelian non-cyclic subgroups of a non-primary locally finite
group G is locally nilpotent non-Dedekind and 2 /∈ π(G), then G has non-cyclic Sylow
p-subgroups for a unique prime p ∈ π(G).

Corollary 5. Any infinite locally finite group G with the infinite locally nilpotent non-
Dedekind norm NA

G is a finite extension of this norm.
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3. Infinite torsion non-locally nilpotent groups with the locally nilpotent non-
Dedekind norm NA

G . In this section we will consider infinite locally finite non-locally
nilpotent groups with locally nilpotent non-Dedekind norm of Abelian non-cyclic subgroups.

Theorem 2. Let G be a locally finite non-locally nilpotent group with the infinite locally
nilpotent non-Dedekind norm NA

G of Abelian non-cyclic subgroups. Then G = Gp⋋H, where
Gp is an infinite HAp-group of one of the types (1)–(4) of Proposition 2, which coincides
with the Sylow p-subgroup of the norm NA

G , H is a finite group, all Abelian subgroups of
which are cyclic, and (|H|, p) = 1. Any element h ∈ H of odd order that centralizes some
Abelian non-cyclic subgroup M ⊂ NA

G is contained in the centralizer of the norm NA
G .

Proof. Let a group G and its norm NA
G satisfy the theorem conditions. Then by Proposition 1

NA
G is a finite extension of the Sylow p-subgroup (NA

G )p.
Let Gp be an arbitrary Sylow p-subgroup of a group G. Since (NA

G )p is a characteristic
subgroup of the norm NA

G , (NA
G )p ◁ G and (NA

G )p ⊆ Gp. Thus, (NA
G )p is contained in the norm

NA
Gp

of Abelian non-cyclic subgroups of a group Gp and then Gp is a locally finite p-group
with the infinite non-Dedekind norm of Abelian non-cyclic subgroups. By Corollary 2

(NA
G )p = NA

Gp
= Gp.

In other words, Gp is an infinite HAp-group, which is normal in G. By the description of
such groups (Proposition 1 [17] and Proposition 2), we conclude that Gp is a group of one
of the types (1)–(4) of Proposition 2.

Taking into account the proved above and Theorem 1, we get [G : Gp] < ∞. Then by the
generalized Shur theorem (see for instance [3] p. 214) the subgroup Gp is complemented in
G and G = Gp ⋋H, where H is a finite group and (|H|, p) = 1. By Theorem 1 all Abelian
subgroups of a group H are cyclic and the first assertion of the theorem is proved.

Let h be an arbitrary element of odd order of the subgroup H that centralizes some
Abelian non-cyclic subgroup M ⊂ NA

G . Without loss of generality, we can consider that
M ⊂ Gp. Since the subgroup (M × ⟨h⟩) is NA

G -admissible, its characteristic subgroup ⟨h⟩ is
also NA

G -admissible. Taking into account that the norm NA
G is locally nilpotent and all its

Sylow q-subgroups (q, 2p) = 1 are cyclic, we conclude that ⟨h⟩ ⊂ CG(N
A
G ). The theorem is

proved.

Note that the subgroup H mentioned in Theorem 2 can be non-nilpotent. Besides, a
group of the structure mentioned in the theorem can contain the non-locally nilpotent norm
of Abelian non-cyclic subgroups. So the conditions of Theorem 2 are necessary but not
sufficient. The examples of such group are below.

Example 1. G = ((A×⟨b⟩)⋋ ⟨c⟩)×H, where A is the quasicyclic 5-subgroup, |b| = |c| = 5,
[A, ⟨c⟩] = E, [b, c] = a1 ∈ A, |a1| = 5, H = ⟨d⟩⋋ ⟨h⟩, |d| = 3, |h| = 4, h−1dh = d−1.

It is easy to prove that in this group the norm of Abelian non-cyclic subgroups is a group
of the type

NA
G = ((A× ⟨b⟩)⋋ ⟨c⟩)× ⟨h2⟩ .

The group G is nilpotent and its norm NA
G of Abelian non-cyclic subgroups is nilpotent.

Example 2. G = (A× ⟨b⟩)⋋ ⟨c⟩⋋ ⟨h⟩, where A is a quasicyclic 7-subgroup, |b| = |c| = 7,
|h| = 3, [A, ⟨c⟩] = E, [b, c] = a1 ∈ A, |a1| = 7, h−1a1h = a41, h−1amh = aαm

m , α3
m ≡ 1

(mod 7m), αm ̸≡ 1 (mod 7m) for any element am ∈ A, |am| = 7m, m > 1, h−1bh = b2,
h−1ch = c2.
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It is evident that G is a group of the type G = G7 ⋋ H, where G7 = (A × ⟨b⟩) ⋋ ⟨c⟩ is
an infinite HA7-group and H = ⟨h⟩.

All Abelian non-cyclic subgroups of the group G are contained in the Sylow 7-subgroup
G7 and normal in the group G. So NA

G = G and the norm NA
G of Abelian non-cyclic subgroups

is a non-locally nilpotent group.
Note that for some additional restrictions conditions of Theorem 2 can become sufficient.

In particular, the following statement holds.

Theorem 3. Let G be an infinite locally finite group. The norm NA
G of Abelian non-cyclic

subgroups is a locally nilpotent non-Dedekind group with the infinite Sylow 2-subgroup if
and only if G = G2 × H, where G2 is an infinite HA2-group of either the type (1), when
p = 2, or types (3)–(4) of Proposition 2, which coincides with the Sylow 2-subgroup of the
norm NA

G , H is a finite group, all Abelian subgroups of which are cyclic, and (|H| , 2) = 1.
Moreover,

NA
G = G2 × Z(H).

Proof. Necessity. By Theorem 2, G = G2 ⋋ H, where G2 is an infinite HA2-group, which
coincides with the Sylow 2-subgroup of the norm NA

G by the theorem condition and is a
group of either the type (1), when p = 2, or types (2)–(4) of Proposition 2, H is a finite
group, all Abelian subgroups of which are cyclic, (|H|, 2) = 1. In all cases the subgroup G2

is a finite extension of the quasicyclic 2-group A.
Let denote an arbitrary element of the subgroup H by h. Then by Proposition 1.11 [3] we

get h ∈ CG(A). Therefore, both the subgroup (⟨h⟩ × A) and its characteristic subgroup ⟨h⟩
are NA

G -admissible. Thus, H is also NA
G -admissible. Since G = G2 ⋋H and G2 is a subgroup

of NA
G , H ◁ G and G = G2 ×H.

Let us prove that H ∩ NA
G = Z(H). Let h ∈ (H ∩ NA

G ). By the proved above ⟨h⟩ is
NA

G -admissible, ⟨h⟩ ◁ NA
G . Taking into account that all 2′-subgroups of the norm NA

G are
cyclic and normal in G, we conclude that ⟨h⟩ ◁ G as a characteristic subgroup of the norm
NA

G .
Since for an arbitrary element y ∈ H of order coprime to |h| the subgroup A × ⟨y⟩ is

Abelian non-cyclic and NA
G -admissible, [h, y] ⊆ ⟨h⟩∩ (A×⟨y⟩) = 1. Taking into account that

all Sylow q-subgroups (q, 2) = 1 are cyclic, we conclude that h ∈ Z(H) and NA
G = G2×Z(H).

Sufficiency. Let G be a group of the structure mentioned in the theorem. Then all its
Abelian non-cyclic subgroups can be presented as M × ⟨y⟩, where M ⊆ G2 is an Abelian
non-cyclic 2-group and (|y|, 2) = 1. Since G2 is an infinite HA2-group, it normalizes all
Abelian non-cyclic 2-subgroups. Besides, G2 normalizes all subgroups of a group H because
[G2, H] = E. Thus, G2 ⊆ NA

G .
Let h, y ∈ H∩NA

G be elements such that (|h|, |y|) = 1. Then subgroups A×⟨y⟩ and A×⟨h⟩
are NA

G -admissible as Abelian non-cyclic. Since subgroups ⟨h⟩ and ⟨y⟩ are characteristic, they
are also NA

G -admissible. Thus, [h, y] ∈ ⟨h⟩ ∩ ⟨y⟩ = E and NA
G is locally nilpotent.

Analysis similar to the proof of the necessity shows that NA
G = G2 × Z(H).

Let’s consider infinite locally finite non-locally nilpotent groups with the finite nilpotent
non-Dedekind norm of Abelian non-cyclic subgroups.

Theorem 4. Let G be an infinite locally finite non-locally nilpotent group with the finite
nilpotent non-Dedekind norm NA

G of Abelian non-cyclic subgroups. Then G = H⋋K, where
H is a finite group, all Abelian subgroups of which are cyclic, (|H| , 2) = 1, K is an infinite
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2-group of one of the types (5)–(6) of Proposition 2. Moreover, the norm NA
K of Abelian

non-cyclic subgroups of the group K is finite, K ∩NA
G = NA

K and coincides with the Sylow
2-subgroup (NA

G )2 of the norm NA
G of a group G.

Moreover, any element h ∈ H of the centralizer of some Abelian non-cyclic subgroup
M ⊂ NA

G is contained in the centralizer of the norm NA
G .

Proof. Let a group G and its norm NA
G of Abelian non-cyclic subgroups satisfy the theorem

condition. Then by Theorem 1 G is a finite extension of a quasicyclic subgroup A. Since the
subgroup NA

G is finite and normal in a group G, [G : CG(N
A
G )] < ∞, we obtain A ⊆ CG(N

A
G ).

By the theorem condition and Proposition 1, NA
G = (NA

G )p ×B, where (NA
G )p is a Sylow

p-subgroup of the norm, which is a finite non-Hamiltonian HAp-group, B is a finite Dedekind
group, all Abelian subgroups of which are cyclic, and (|B|, p) = 1.

If p ̸= 2, then A is contained in the center of any Sylow p-subgroup Gp of a group G.
Then the norm NA

Gp
of Abelian non-cyclic subgroups of the group Gp contains the product

A · (NA
G )p and is an infinite non-Dedekind p-group. By Corollary 2, NA

Gp
= Gp and Gp is a

HAp-group.
Taking into account that the subgroup (NA

G )p is non-Dedekind and the description of
non-Hamiltonian HAp-groups [10], we conclude that Gp = A · (NA

G )p. Therefore, Gp�G as a
product of normal subgroups. By the generalized Shur theorem ( [3], p. 214), the subgroup
Gp is complemented in G and G = Gp⋋H, where H is a finite group, all Abelian subgroups
of which are cyclic, and (|H|, p) = 1.

If all Abelian non-cyclic subgroups of a group G are p-groups, then Gp ⊆ NA
G , which

contradicts the finiteness of the norm NA
G . Therefore, G contains a non-primary Abelian

non-cyclic subgroup M = Mp × Mq, where Mp is an Abelian non-cyclic p-group, Mq is a
cyclic q-group (p ̸= q). Taking into account the structure of the subgroup Gp, we conclude
that Mp

⋂
A ̸= E. Thus, Mq ⊆ CG(a1), where a1 ∈ A, |a1| = p. By Proposition 1.11 [3]

Mq ⊆ CG(A), so A ⊆ NA
G , which contradicts the finiteness of the norm NA

G . Thus, this case
is impossible.

Let now p = 2. Since the quasicyclic 2-group A is normal in G and non-central (because
in this case |NA

G | = ∞), [G : CG(A)] = 2 and G = CG(A) ⟨x⟩ , where x2 ∈ CG(A).
By the condition A ⊆ CG(N

A
G ), we get NA

G ⊆ CG(A). Thus, CG(A) is a group, which
has the infinite locally nilpotent norm of Abelian non-cyclic subgroups. Using Theorem 3 to
CG(A), we get CG(A) = C2 ×H, where C2 is an infinite HA2-group, H is a finite group, all
Abelian subgroups of which are cyclic, and (|H|, 2) = 1.

Since the subgroup H is characteristic in CG(A), H �G. It follows also that H contains
all 2′-elements of a group G, further, a Sylow 2′-subgroup of a group G. Taking into account
that a group G is countable, contains a normal solvable locally normal Sylow 2′-subgroup
H and, by [9] (p. 508), we conclude that H is complemented in G. Therefore, G = H ⋋K,
where K is an infinite 2-subgroup, A ⊆ K.

Since the Sylow 2-subgroup (NA
G )2 of the norm NA

G is finite, is contained in the norm NA
K of

Abelian non-cyclic subgroups of the group K and A ̸⊆ Z(K), NA
K is a finite non-Hamiltonian

HA2-group. Accordingly, K is an infinite locally finite 2-group with the finite non-Dedekind
norm of Abelian non-cyclic subgroups, K ∩NA

G = NA
K = (NA

G )2. By the description of such
groups, K is a group of one of the types (5)–(6) of Proposition 2.

The proof of last theorem assertion is similar to the proof of Theorem 2.

The existence of infinite non-locally nilpotent groups with the finite nilpotent norm of
Abelian non-cyclic subgroups confirms the following example.
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Example 3. G = ⟨h⟩⋋ (A×⟨b⟩)⋋ ⟨c⟩)⋋ ⟨d⟩, where A is the quasicyclic 2-group, |b| = |c| =
|d| = 2, [A, ⟨c⟩] = E, [b, c] = [b, d] = [c, d] = a1 ∈ A, |a1| = 2, d−1ad = a−1 for an arbitrary
element a ∈ A, |h| = 3, d−1hd = h−1, [A, ⟨h⟩] = E, [b, h] = [c, h] = 1.

Since NA
G ⊆ NG(⟨d, a1⟩)∩NG(⟨hd, a1⟩) = (⟨a2⟩ × ⟨b⟩)⋋ ⟨c⟩ = N, where a2 ∈ A, |a2| = 4,

all Abelian non-cyclic subgroups contain the involution a1 ∈ A and [G,N ] ⊆ ⟨a1⟩,
NA

G = (⟨a2⟩ × ⟨b⟩)⋋ ⟨c⟩ .
Moreover, G is an infinite non-locally nilpotent group, the norm NA

G is a finite nilpotent
group.
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