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For an entire transcendental function f and a sequence (λn) of positive numbers increa-
sing to +∞ a series A(z) =

∑∞
n=1 anf(λnz) in the system {f(λnz)} is said to be regularly

convergent in C if M(r,A) =
∑∞

n=1 |an|Mf (rλn) < +∞ for all r ∈ (0,+∞), where Mf (r) =
max{|f(z)| : |z| = r}. Conditions are found on (λn) and f , under which lnM(r,A) ∼ lnµ(r,A)
as r → +∞, where µ(r,A) = max{|an|Mf (rλn) : n ≥ 1} is the maximal term of the series.
A formula for finding the lower generalized order

λα,β [A] = lim
r→+∞

α(lnM(r,A))

β(r)

is obtained, where the functions α and β are positive, continuous and increasing to +∞.
The open problems are formulated.

1. Introduction. Let
f(z) =

∞∑
k=0

fkz
k (1)

be an entire transcendental function, Mf (r) = max{|f(z)| : |z| = r} and Λ = (λn) be a
sequence of positive numbers increasing to +∞. Suppose that the series

A(z) =
∞∑
n=1

anf(λnz) (2)

in the system f(λnz) regularly convergent in C, that is

M(r, A) :=
∞∑
n=1

|an|Mf (rλn) < +∞ for all r ∈ [0,+∞).

It is clear that many functional series arising in various sections of the analysis can be written
as series by a system of functions {f(λnz)}. In particular, for example, in articles [1–4] B.V.
Vinnitskii investigated under the most general conditions on a function f itself and on the
sequence (λn), both the basicity of this system of functions and the properties of series on this
system. In [5, 6] there were obtained the conditions under which, for series of the form (2),
as well as integrals of the form

∫ +∞
0

a(t)f(tx)ν(dt) that are a generalization of such series,
the Borel-type asymptotic relation holds outside some set of finite Lebesgue measure, where
f is a positive functions on (0,+∞) such that the function ln f(x) is convex on (0,+∞).
In [7], the Borel-type relation was considered for more general positive integrals of the form
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0

a(t)f(tx+β(t)τ(x))ν(dt), which are, in particular, generalizations of series of the Taylor-
Dirichlet type. In the end, modern e-search systems will allow the reader to easily find both
other articles about the series on this general system of functions, and on the specific systems
of functions, such as the Mittag-Leffler functions, the Bessel functions, and many others. This
article continues the study of the properties series of form (2), which was started by the first
author in articles [8–10].

Let µ(r, A) = max{|an|Mf (rλn) : n ≥ 1} be the maximal term of series (1) and ν(r, A) =
max{n ≥ 1: |an|Mf (rλn) = µ(r, A)} be its central index.

Since function (1) is transcendental, the function lnMf (r) is logarithmically convex and,
thus,

Γf (r) :=
d lnMf (r)

d ln r
↗ +∞, r → +∞,

(at points where the derivative does not exist, under d lnMf (r)

d ln r
means right-hand side deri-

vative). The function Γf (r) plays an important role in the study of the properties of series
in system of functions. For example, in [9] it is proved that the functions lnµ(r, A), λν(r,A)

and ν(r, A) are non-decreasing and

lnµ(r, A)− lnµ(r0, A) =

∫ r

r0

Γf (tλν(t,A))

t
dt, 0 ≤ r0 ≤ r < +∞.

Here we will study the conditions for the equivalence of the logarithms of the functions
M(r, A) and µ(r, A), a behavior of µ(r, A) and ν(r, A) in the case when Γf (r) ↑ +∞ and
apply the results obtained to finding formulas for lower generalized orders.

2. Equivalence of lnM(r, A) and lnµ(r, A). Let h be a positive continuous function on
[0,+∞) increasing to +∞ and Sh(f,Λ) be a class of the function A such that
|an|Mf (λnh(λn)) → 0 as n → +∞, whence |an| ≤ 1/Mf (λnh(λn)) for n ≥ n0. For simplicity,
we will assume that n0 = 1.

Let n0(r) = min{n : h(λn) ≥ qr}, q > e. Then

M(r, A) ≤
n0(r)−1∑
n=1

|an|Mf (rλn) +
∞∑

n=n0(r)

Mf (rλn)
/
Mf (λnh(λn)) ≤

≤ (n0(r)− 1)µ(r, A) +
∞∑

n=n0(r)

Mf (λnh(λn)/q)
/
Mf (λnh(λn)).

Since
∫ λnh(λn)

λnh(λn)/q
Γf (x)d lnx ≥ Γf (λnh(λn)/q) ln q, we have

Mf (λnh(λn)/q)

Mf (λnh(λn))
= exp

{
−

∫ λnh(λn)

λnh(λn)/q

Γf (x)d lnx
}
≤ exp{−Γf (λnh(λn)/q) ln q}

and
M(r, A) ≤ (n0(r)− 1)µ(r, A) +

∞∑
n=1

exp {−Γf (h(λn)) ln q} , (3)

provided λn ≥ q. Suppose that lnn ≤ pΓf (h(λn)) for all n ≥ 1. Then for q > ep we obtain
∞∑
n=1

exp {−Γf (h(λn)) ln q} ≤
∞∑
n=1

exp
{
− ln q

p
lnn

}
= K1(q) < +∞.

Therefore, (3) implies M(r, A) ≤ (n0(r)− 1)µ(r, A) +K1(q) and, thus,
lnµ(r, A)

lnM(r, A)
≤ 1 ≤ ln(n0(r)− 1)

lnM(r, A)
+

lnµ(r, A)

lnM(r, A)
+ o(1), r → +∞. (4)

Now, by E we denote a class of entire functions (1) such that r = O(lnMf (r)) and
lnMf (r) = O(Γf (r)) as r → +∞. Then for f ∈ E, lnMf (r) = o(lnM(r, A)) as r → +∞.



48 Yu. M. GAL’, M M. SHEREMETA

Indeed, M(r, A) ≥ |an|Mf (rλn) implies lnM(r, A) ≥ ln |an| + lnMf (rλn). On the other
hand, since Γf (r)

/
lnMf (r) ≥ η > 0 for all r, we get

lnMf (rλn)

lnMf (r)
= exp

{∫ rλn

r

d ln lnMf (r)

d ln r
d ln r

}
= exp

{∫ rλn

r

Γf (r)

lnMf (r)
d ln r

}
≥

≥ exp
{∫ rλn

r

ηd ln r
}
= exp {η lnλn} = λη

n

for all n. In view of the arbitrariness of λn we get lnMf (r)) = o(lnMf (rλn)), i.e. lnMf (r)) =
= o(lnM(r, A)) as r → +∞.

Finally, suppose that lnn = O(h(λn)) as n → ∞. Then lnn = O(Γf (h(λn))) as n → ∞
and, since h(λn0(r)−1) ≤ qr, we get ln(n0(r) − 1) = O(r) = O(lnMf (r)) = o(lnM(r, A)) as
r → +∞. Therefore, from (4) it follows that lnM(r, A) ∼ lnµ(r, A) as r → +∞.

Thus, the following theorem is true.

Theorem 1. Let h be a positive continuous function on [0,+∞) increasing to +∞.
If lnn = O(h(λn)) as n → ∞ then lnM(r, A) ∼ lnµ(r, A) as r → +∞ for every functi-
ons A ∈ Sh(f,Λ) and f ∈ E.

Condition lnn = O(h(λn)) as n → ∞ in Theorem 1 cannot be relaxed; this is shown by
the following statement.
Proposition 1. Let h be a positive continuous function on [0,+∞) increasing to +∞.
For any positive continuous function α on [0,+∞), slowly increasing to +∞, there exist
functions f ∈ E and A ∈ Sh(f,Λ) such that lnn = O(α(λn)h(λn)) as n → ∞ and the
relation lnM(r, A) ∼ lnµ(r, A) as r → +∞ is not satisfied.

Indeed, the function f(z) = ez belongs to E, and then A(z) =
∑∞

n=1 ane
λnz is an entire

Dirichlet series. For such function A this proposition is prowed in [11].
Theorem 1 is supplemented by the following assertion.

Proposition 2. Let h be a positive continuous function on [0,+∞) increasing to +∞. If
ln r = O(Γf (r)) as r → +∞ and lnn = O(lnh(λn)) as n → ∞ then lnM(r, A) ∼ lnµ(r, A)
as r → +∞ for every function A ∈ Sh(f,Λ).

Indeed, since lnn = O(lnh(λn)) = O(Γf (h(λn))) as n → ∞, from (3) we obtain again
(4). Also lnh(λn0(r)−1) ≤ ln(qr) and, thus, ln(n0(r) − 1) = O(lnh(λn0(r)−1)) = O(ln r) =
o(lnMf (r)) = o(lnM(r, A)) as r → +∞. Therefore, from (4) it follows that lnM(r, A) ∼
lnµ(r, A) as r → +∞.

3. Maximal term and central index of some class of series in the system of
functions. Now, we suppose that Γf (r) ↑ +∞ as r → +∞. Then for all n ≥ 1∫ λn+1

λn

Γf (rx)d lnx ↑ +∞, r → +∞,

and as above
Mf (rλn+1)

Mf (rλn)
= exp

{∫ rλn+1

rλn

Γf (x)d lnx
}
= exp

{∫ λn+1

λn

Γf (rx)d lnx
}
↑ +∞, r → +∞.

If all an ̸= 0 then from hence it follows that the equation Mf (rλn+1)
/
Mf (rλn) = |an|/|an+1|

has unique solution r = κn, i.e.
|an|/|an+1| = Mf (κnλn+1)

/
Mf (κnλn).

Let κn ↗ +∞ and j < n. Then
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|aj|Mf (κnλj) = |an|
|aj|
|aj+1|

|aj+1|
|aj+2|

. . .
|an−1|
|an|

Mf (κnλj) ≤

≤ |an|
Mf (κnλj+1)

Mf (κnλj)

Mf (κnλj+2)

Mf (κnλj+1)
. . .

Mf (κnλn)

Mf (κnλn−1)
Mf (κnλj) = |an|Mf (κnλn).

If j > n then

|aj|Mf (κnλj) = |an|
|aj|
|aj−1|

|aj−1|
|aj−2|

. . .
|an+1|
|an|

Mf (κnλj) =

= |an|
Mf (κj−1λj−1)

Mf (κj−1λj)

Mf (κj−2λj−2)

Mf (κj−2λj−1)
. . .

Mf (κnλn)

Mf (κnλn+1)
Mf (κnλj) ≤ |an|Mf (κnλn).

Thus, µ(κn, A) = |an|Mf (κnλn) for all n ≥ 1.
Now, let κn ↑ +∞ and κn−1 ≤ r < κn. Then for j < n as above
|aj|Mf (rλj)

|an|Mf (rλn)
=

Mf (κjλj+1)

Mf (κjλj)
. . .

Mf (κn−1λn)

Mf (κn−1λn−1)

Mf (rλj)

Mf (rλn)
≤ Mf (κn−1λn)

Mf (κn−1λj)

Mf (rλj)

Mf (rλn)
≤ 1

and for j > n

|aj|Mf (rλj)

|an|Mf (rλn)
=

Mf (κj−1λj−1)

Mf (κj−1λj)
. . .

Mf (κnλn)

Mf (κnλn+1)

|Mf (rλj)

Mf (rλn)
≤ Mf (κnλn)

Mf (κnλj)

|Mf (rλj)

Mf (rλn)
≤ 1

and, thus, µ(r, A) = |an|Mf (rλn) and ν(r, A) = n. Therefore, the following theorem is
correct.

Theorem 2. If κn ↗ +∞ as n → +∞ then µ(κn, A) = |an|Mf (κnλn). If κn ↑ +∞ as
n → +∞ then µ(r, A) = |an|Mf (rλn) and ν(r, A) = n for all r ∈ [κn−1, κn) and all n ≥ 1.

4. Lover generalized order. As in [12] by L we denote a class of continuous non-negative
on (−∞, +∞) functions α such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as
x0 ≤ x → +∞. We say that α ∈ L0, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as
x → +∞. Finally, α ∈ Lsi, if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for each
c ∈ (0, +∞), i.e. α is a slowly increasing function. Clearly, Lsi ⊂ L0.

For α ∈ L and β ∈ L quantity

ϱα,β[A] = ϱα,β[M] = lim
r→+∞

α(lnM(r, A))

β(r)

is called [9] generalized (α, β)-order of the entire function A.
Suppose that α(ex) ∈ L0, β(x) ∈ L0 and ln r

lnα−1(cβ(r))
→ 0 as r → +∞ for each c ∈

(0, +∞). If lnn = o(Γf (λn)) as n → ∞, lnMf (r) = O(Γf (r)) and Γf (r) = O(r) as r → +∞
then [9]

ϱα,β[A] = lim
n→∞

α(λn)

β
(
M−1

f (1/|an|) /λn

) .
Here we define a lower generalized (α, β)-order

λα,β[A] = λα,β[M] = lim
r→+∞

α(lnM(r, A))

β(r)

and prove the same formula for λα,β[A].
We need the following lemma [9].

Lemma 1. If lnn = O(Γf (λn)) as n → ∞ then µ(r, A) ≤ M(r, A) ≤ Kµ(qr, A),
(K = const > 0) for q > 1 and all r ≥ 1. If lnn = o(Γf (λn)) as n → ∞ then µ(r, A) ≤
M(r, A) ≤ K(ε)µ((1 + ε)r, A), (K(ε) > 0) for every ε > 0 and all r ≥ 1.
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Lemma 1 implies the following statement.

Proposition 1. Let α(lnx) ∈ Lsi. If either lnn = O(Γf (λn)) as n → ∞ and β ∈ Lsi or
lnn = o(Γf (λn)) as n → ∞ and β ∈ L0 then

λα,β[A] = λα,β[µ] := lim
r→+∞

α(lnµ(r, A))

β(r)
.

Proof. If lnn = O(Γf (λn)) as n → ∞ and β ∈ Lsi then by Lemma 1

lim
r→+∞

α(lnµ(r, A))

β(r)
≤ lim

r→+∞

α(lnM(r, A)

β(r)
≤ lim

r→+∞

α(lnµ(qr, A) + lnK)

β(qr)
lim

r→+∞

β(qr)

β(r)
=

= lim
r→+∞

α(lnµ(r, A))

β(r)
lim

r→+∞

β(qr)

β(r)
= lim

r→+∞

α(lnµ(r, A))

β(r)
.

If lnn = o(Γf (λn)) as n → ∞ then similarly we obtain
lim

r→+∞
α(lnM(r, A)/β(r) ≤ lim

r→+∞
α(lnµ(r, A))/β(r) lim

r→+∞
β((1 + ε)r)/β(r).

It is known [6] that if β ∈ L0 then lim
r→+∞

β((1 + ε)r)/β(r) ↘ 1 as ε ↘ 0.

Using Theorem 2 and Proposition 3 we prove the following theorem.

Theorem 3. Let α(ex) ∈ L0, β(x) ∈ L0, ln r
lnα−1(cβ(r))

→ 0 as r → +∞ for each
c ∈ (0, +∞). Suppose that Γf (r) ≍ r as r → +∞. If α(λn+1) ∼ α(λn), κn ↗ +∞ and
lnn = o(Γf (λn)) as n → ∞ then

λα,β[A] = σα,β[A] := lim
n→∞

α(λn)

β
(
M−1

f (1/|an|) /λn

) .
Proof. At first we remark that 0 < c1r ≤ Γf (r) ≤ c2r < +∞ for all r.

Suppose that σα,β[A] > 0. Then |an| ≥ 1
/
Mf

(
λnβ

−1 (α(λn)/σ)
)

for every σ ∈ (0, σα,β[A])
and all n ≥ n0(σ). We choose r = rn = β−1 (α(λn)/σ) + 1. Then for rn ≤ r ≤ rn+1 we have

lnµ(r, A) ≥ lnµ(rn, A) ≥ ln |an|+ lnMf (rnλn) ≥
≥ lnMf

(
λn

(
β−1 (α(λn)/σ + 1)

))
− lnMf

(
λnβ

−1 (α(λn)/σ)
)
=

=

∫ λn(β−1(α(λn)/σ)+1)

λnβ−1(α(λn)/σ)

Γf (x)d lnx ≥ Γf

(
λnβ

−1 (α(λn)/σ)
)
ln
(
1 +

1

β−1 (α(λn)/σ)

)
≥

≥ c1λnβ
−1 (α(λn)/σ) ln

(
1 +

1

β−1 (α(λn)/σ)

)
= (1 + o(1))c1λn, n → ∞.

Therefore, since α ∈ Lsi and β ∈ L0,

λα,β[µ] = lim
r→+∞

α(lnµ(r, A))

β(r)
≥ lim

n→∞

α(lnµ(rn, A))

β(rn+1)
≥ lim

n→∞

σα(c1λn)

α(λn+1)
= σ,

because α ∈ Lsi and α(λn+1) ∼ α(λn) as n → ∞. In view of the arbitrariness of σ we obtain
the inequality σα,β[A] ≤ λα,β[µ] that is obvious if σα,β[A] = 0.

Now suppose that σα,β[A] < +∞. Then for every σ > σα,β[A]) there exists a sequence
(nj) → ∞ such that |anj

| ≤ 1
/
Mf

(
λnj

β−1
(
α(λnj

)/σ
))
. Since κn ↗ +∞ as n → +∞, by

Theorem 2 we have µ(κnj
, A) = |anj

|Mf (κnj
λnj

). Let m ∈ {nj}. Then
µ(κm, A) ≤ Mf (κmλm)

/
Mf

(
λmβ

−1 (α(λm)/σ)
)
≤ µ∗(κm),

where µ∗(r) = max{Mf (rλn)
/
Mf

(
λnβ

−1
(
α(λn)/σ

))
: n ≥ 1}. Therefore,
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λα,β[µ] = lim
r→+∞

α(lnµ(r, A))

β(r)
≤ lim

m→+∞

α(lnµ(κm, A))

β(κm)
≤ lim

m→+∞

α(lnµ∗(κm))

β(κm)

In [9] (see the proof of Theorem 4) it is proved that if α(ex) ∈ L0, ln r
lnα−1(cβ(r))

→ 0 as r → +∞
for each c ∈ (0, +∞) and Γf (r) ≤ c2r then

lim
r→+∞

α(lnµ∗(r))/β(r) ≤ σ.

Therefore, in view of the arbitrariness of σ we obtain the inequality λα,β[µ] ≤ σα,β[A] that is
obvious if σα,β[A] = +∞. Thus, λα,β[µ] = σα,β[A] and by Proposition 2 λα,β[A] = σα,β[A].

Remark 1. In Theorem 3, conditions β(x) ∈ L0 and lnn = o(Γf (λn)) as n → ∞ can be
replaced by conditions β(x) ∈ Lsi and lnn = O(Γf (λn)) as n → ∞.

The functions α(x) = ln+ x and β(x) = x+ satisfy the conditions of Theorem 4. There-
fore, the following statement is correct.

Corollary 1. Let the function f and the sequence (λn) satisfy the conditions of Theorem 3.
If κn ↗ +∞ as n → ∞ then

lim
r→+∞

ln lnM(r, A))

r
= lim

n→∞

λn lnλn

M−1
f (1/|an|)

.

The functions α(x) = β(x) = ln+ x not satisfy the conditions of Theorem 3. In this case
we put

λ[A] = lim
r→+∞

ln lnM(r, A))

ln r

and prove the following statement.

Proposition 2. Let r = O(Γf (r)) as r → +∞ and lim
n→∞

ln lnMf (r)

ln r
≤ 1. If lnλn+1 ∼ lnλn,

κn ↗ +∞ and lnn = O(Γf (λn)) as n → ∞ then

λ[A] = σ[A] + 1, σ[A] := lim
n→∞

lnλn

ln(M−1
f (1/|an|)/λn)

.

Proof. Suppose that σ[A] > 0. Then |an| ≥ 1
/
Mf (λ

1+1/σ
n ) for every σ ∈ (0, σ[A]) and all

n ≥ n0(σ). We choose r = rn = 2λ
1/σ
n . Then for rn ≤ r ≤ rn+1 we have

lnµ(rn, A) ≥ lnMf (2λ
1+1/σ
n )− lnMf (λ

1+1/σ
n ) =

∫ 2λ
1+1/σ
n

λ
1+1/σ
n

Γf (x)

x
dx ≥ c1λ

1+1/σ
n .

Since lnλn+1 ∼ lnλn as n → ∞,

λ[µ] := lim
r→+∞

ln lnµ(r, A))

ln r
≥ lim

n→∞

ln lnµ(rn‘, A))

ln rn+1

≥ lim
n→∞

ln(c1λ
1+1/σ
n )

ln(2λ
1/σ
n+1)

= 1 + σ.

In view of the arbitrariness of σ ∈ (0, σ[A]) we obtain the inequality λ[µ] ≥ σ[A] + 1.
The inequality Γf (r) ≥ c1r implies

lnµ(r, A) ≥ lnMf (r) ≥ (1 + o(1)c1r

as r0 ≤ r → +∞, i.e. λ[µ] ≥ 1 and the inequality λ[µ] ≥ σ[A] + 1 holds at σ[A] = 0.
On the other hand, if σ[A] < +∞ then |anj

| ≤ 1/Mf (λ
1+1/σ
nj ) for every σ > σ[A]) and

some sequence (nj) → ∞. Therefore, for m ∈ {nj} as above we get µ(κm, A) ≤ µ∗(κm),
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where µ∗(r) = max{Mf (rλn)
/
Mf (λ

1+1/σ
n ) : n ≥ 1}. In [9] (see the proof of Theorem 5) it is

proved that

lim
r→+∞

ln lnµ∗(r)

ln r
≤ (1 + σ) lim

r→+∞

ln lnMf (r)

ln r
.

Therefore,

λ[µ] = lim
r→+∞

ln lnµ(r, A)

ln r
≤ lim

m→+∞

ln lnµ(κm, A)

lnκm

≤ lim
m→+∞

ln lnµ∗(κm)

lnκm

≤

≤ lim
m→+∞

ln lnµ∗(κm)

lnκm

≤ lim
r→+∞

ln lnµ∗(r)

ln r
≤ (1 + σ) lim

r→+∞

ln lnMf (r)

ln r
≤ 1 + σ.

In view of the arbitrariness of σ we obtain the inequality λ[µ] ≤ 1 + σ[A] that is obvious if
σ[A] = +∞.

5. Some open problems. If f(z) = ez then A(z) = F (z), where

F (z) =
∞∑
n=1

ane
λnz, z = σ + it,

is an entire Dirichlet series. We put M(σ) =
∑∞

n=1 |an|eλnσ and µ(σ) = max{|an|eλnσ : n ≥
1}. Then [11] lnM(σ) ∼ lnµ(σ) as σ → +∞, provided |an| ≤ exp{−λn(h(λn)} for n ≥ n0

and lnn = O(h(λn)) as n → ∞, where h is a positive continuous function on [0,+∞)
increasing to +∞. Therefore, we can consider that Theorem 3 is a generalization of this result.
In [14,15] it is studied conditions under which φ(lnM(σ)) ∼ φ(lnµ(σ)) as σ → +∞, where
φ is a positive continuous function on [0,+∞) increasing to +∞. The following question
arises.

Question 1. For a given function φ under what conditions the relation
φ(lnM(r, A)) ∼ φ(lnµ(r, A))

holds as r → +∞ for the entire functions A of form (2)?

Using the Wiman-Valiron method, in [16] it is proved that the asymptotitc estimate
lnM(σ) ∼ lnµ(σ) holds as 0 < σ → +∞ outside some exceptional sets of finite measure for
each Dirichlet series with a given sequence of exponents (λn) if and only if

∞∑
n=1

1

nλn

< +∞.

The conjecture about the correctness of this statement was posed in [17]. The following
conjecture seems to be correct.

Conjecture 1. If
∞∑
n=1

1

nΓf (λn)
< +∞

then lnM(r, A) ∼ lnµ(r, A) as r → +∞ outside some exceptional set E such that∫
E

Γf (x)

x
dx < +∞

for the every entire functions A of form (2).

Question 2. The condition Γf (r) ≍ r as r → +∞ in Theorem 3 appeared due to the applied
method. Can it be weakened?
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