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By analyzing proofs of the classical Riesz-Kantorovich theorem, the Mazón-Segura de
León theorem on abstract Uryson operators and the Pliev-Ramdane theorem on C-bounded
orthogonally additive operators on Riesz spaces, we find the most general (to our point of vi-
ew) algebraic structure, which we call a complementary space, for which the theorem can be
generalized with a similar proof. By a complementary space we mean a PO-set G with a least
element 0 such that every order interval [0, e] of G with e ̸= 0 is a Boolean algebra with respect
to the induced order. There are natural examples of complementary spaces: Boolean rings,
Riesz spaces with the lateral order. Moreover, the disjoint union of complementary spaces is
a complementary space. Our main result asserts that, the set of all additive (in certain sense)
functions from a complementary space to a Dedekind complete Riesz space admits a natural
Dedekind complete Riesz space structure, described by formulas which are close to the classical
Riesz-Kantorovich ones. This theorem generalizes the above mentioned Mazón and Segura de
León and Pliev-Ramdane theorems. In the final section, we construct a model of market with
an arbitrary commodity set, connected to a complementary space.

1. Introduction. The classical Riesz-Kantorovich theorem [1, Theorem 1.18] asserts that if
E and F are Riesz spaces with F Dedekind complete then the vector space Lb(E,F ) of all
order bounded linear operators T : E → F is a Riesz space with respect to the natural order
(that is, S ≤ T if and only if (T −S)(E+) ⊆ F+). The second part of the Riesz-Kantorovich
theorem provides formulas for the lattice operations on Lb(E,F ).

Later an analogue of the Riesz-Kantorovich theorem was obtained by Mazón and Segura
de León in [6] for a wide class of mappings T : E → F , the vector space U(E,F ) of all order
bounded orthogonally additive operators (referred also as abstract Uryson operators). Then
Pliev and Ramdane generalized the Mazón-Segura de León theorem to much more wider
class of laterally-to-order bounded (in other terminology, C-bounded) orthogonally additive
operators in [10, Theorem 3.6].

Below we familiarly use some standard information on Riesz spaces and positive operators
on them from the frames of Aliprantis-Burkinshaw’s book [1], and on general lattices, Boolean
algebras and boolean rings [5]. We use the special notation

⊔n
i=1 xi and x1 ⊔ . . . ⊔ xn for

a disjoint sum of elements xi of a Riesz space. So once it is written, we automatically assume
that xi ⊥ xj as i ̸= j (recall that x ⊥ y means |x| ∧ |y| = 0 in a Riesz space).
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Recall that a function T : E → F acting between Riesz space E and F is called an
orthogonally additive operator if for every x, y ∈ E with x ⊥ y one has T (x+y) = T (x)+T (y).
The order ≤ on the set OAO(E,F ) of all orthogonally additive operators T : E → F is
different from the defined above order on Lb(E,F ) (notice that Lb(E,F ) formally is a vector
subspace of OAO(E,F )) and defined by setting S ≤ T if and only if (T −S)(E) ⊆ F+. The
two distinct orders are denoted by the same symbol ≤, which in most cases does not lead
to a misunderstanding (it is easy to see that the only linear operator T : E → F which is
positive, that is, T ≥ 0, as an orthogonally additive operator is zero). See [9] for a survey on
orthogonally additive operators.

One of the ideas of the present paper is to find, as general as possible, a domain set
E with a suitable structure such that for the set A(E,F ) of all (in a certain sense) addi-
tive operators the Riesz-Kantorovich theorem remains valid. Such a domain set we call
a complementary space below. One of our main results generalizes the Riesz-Kantorovich
theorem to complementary spaces.

2. Complementary spaces. Looking ahead, we announce that the most valuable examples
of complementary spaces are, on the one hand, Boolean rings and, on the other hand, Riesz
spaces with the lateral order, which is a much less known object in mathematics than Boolean
rings. This is why we begin with an information on the lateral order.

2.1. The lateral order on a Riesz space. Every Riesz space (= vector lattice) E is
naturally endowed with a partial order which differs from the given order ≤. We set x ⊑ y
provided x is a fragment (= component) of y, that is, x ⊥ y − x. The set of all fragments
of a given element e ∈ E is denoted by Fe. Obviously, if e = x + y then the following three
conditions are equivalent: x ⊑ e, y ⊑ e and x ⊥ y. Hence if e =

⊔m
k=1 xk then (xk)

m
k=1 are

disjoint fragments of e. By [7, Proposition 3.4] (see also [1, Theorem 3.15]), Fe is a Boolean
algebra with respect to the lateral order for every e ∈ E \ {0}. We refer the readers to [7]
and [8] for a detailed information on the lateral order.

2.2. Main definitions and notation. As usual, the supremum (or infimum) of a two-point
subset {x, y} of a PO-set (= partially ordered set) (G,⪯) in the lattice theory is denoted
by x ∨ y (respectively, by x ∧ y). This is not convenient in our setting, because one of the
most important examples of complementary spaces is a Riesz space G with the lateral order
⊑, and the expressions x ∨ y, x ∧ y in G mean the supremum and infimum with respect to
the given order ≤ on G. So for suprema and infima we will use the same notation as for the
lateral order on Riesz spaces:⋃⋃⋃⋃⋃⋃⋃⋃⋃

A :=⪯ - supA,
⋂⋂⋂⋂⋂⋂⋂⋂⋂

A :=⪯ - inf A for A ⊆ G;

x∪∪∪∪∪∪∪∪∪ y :=⪯ - sup{x, y}, x∩∩∩∩∩∩∩∩∩ y :=⪯ - inf{x, y} for x, y ∈ G.

We use the symbols in bold to distinguish them from the symbols of union and inter-
section.

Definition 1. Let (G,⪯) be a PO-set with a least element 0 and x, y, z ∈ G. Elements y, z
of G are said to be separated (write y†z), if y∩∩∩∩∩∩∩∩∩ z = 0. If y†z and x = y∪∪∪∪∪∪∪∪∪ z then we say that
x is a direct sum of y and z and write x = y ⊕ z.

In other words, x†y means that for every t ∈ E the conditions t ⪯ x and t ⪯ y imply
t = 0.
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In the sequel, once x ⊕ y is written, we understand that x†y and the supremum x ⊕ y
exists.

Given a PO-set(G,⪯) with a least element 0 and g ∈ G, we set Fg := {x ∈ G : x ⪯ g}.

Definition 2. A PO-set (G,⪯) with a least element 0 is called a complementary space, if
the following conditions hold:

(CS1) for every x, y ∈ G with y ⪯ x there exists z ∈ G such that x = y ⊕ z;

(CS2) for every x, y, u, v ∈ G with x⊕ y = u⊕ v there exist a, b, c, d ∈ G such that x = a⊕ b,
y = c⊕ d, u = a⊕ c and v = b⊕ d.

Remark 1. (1) (CS1) does not imply (CS2). The following set of subsets of the set Ω =
{1, 2, 3, 4} possesses (CS1) with respect to the inclusion relation and does not possess
(CS2):

G =
{
∅, {1, 2}, {3, 4}, {1, 3}, {2, 4},Ω

}
.

(2) (CS2) does not imply (CS1): every linearly ordered set consisting of, at least, 3 elements
satisfies (CS2) and does not satisfy (CS1).

One can show that, a PO-set (G,⪯) with a least element possessing (CS1) may have two
distinct elements z1 ̸= z2 in G for certain y ⪯ x such that x = y ⊕ z1 = y ⊕ z2. However, in
a complementary space the complement is unique, as the following assertion confirms.

Proposition 1. Let (G,⪯) be a PO-set with the least element 0 possessing (CS2). Let
e, r, s, t ∈ G satisfy e = r ⊕ s = r ⊕ t. Then s = t.

Proof. Using (CS2) with x = u = r, y = s and v = t, we conclude that there are a, b, c, d ∈ G
such that r = x = a ⊕ b = u = a ⊕ c, s = y = c ⊕ d, t = v = b ⊕ d. Therefore,
b ⪯ a⊕ b = a⊕ c = r and b ⪯ b⊕ d = t. So r † t implies b = 0.

Analogously, c ⪯ a ⊕ c = a ⊕ b = r and c ⪯ c ⊕ d = s and hence c = 0. Thus,
s = c⊕ d = d = b⊕ d = t.

Corollary 1. A PO-set (G,⪯) with the least element 0 is a complementary space if and
only if (G,⪯) possesses (CS2) and the following strong version of (CS1):

(CS1′) for every x, y ∈ G with y ⪯ x there exists a unique z ∈ G such that x = y ⊕ z.

Definition 3. Let (G,⪯) be a complementary space, x, y ∈ G and y ⪯ x. The unique
element z of G such that x = y ⊕ z is called the direct difference of x and y, and is denoted
by x⊖ y.

So if (G,⪯) is a complementary space then

(∀x, y ∈ G) y ⪯ x ⇒ x = y ⊕ (x⊖ y). (1)

Observe that, if for every nonzero element e of G with a least element 0 the order interval
Fe is a Boolean algebra then (CS1)–(CS2) hold true, and G is a complementary space. Below
we prove that the converse is also true.

2.3. Important examples. Below we provide important examples of complementary spaces.

Example 1. Any Boolean ring is a complementary space.
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Example 2. Every subset G of a Riesz space E with the properties

(1) (∀x, y ∈ G)
(
(y ⊑ x) ⇒ (x− y ∈ G)

)
;

(2) (∀x, y ∈ G) (x∩∩∩∩∩∩∩∩∩ y ∈ G)

is a complementary space with respect to the lateral order ⊑ on E.

Proof. (CS1) easily follows from (1). We prove (CS2). Fix any x, y, u, v ∈ G with e := x⊕y =
u⊕v in G, and so e ∈ G. By [7, Proposition 3.4], the vectors a := x∩∩∩∩∩∩∩∩∩u, b := x∩∩∩∩∩∩∩∩∩v, c := y∩∩∩∩∩∩∩∩∩u
and d := y∩∩∩∩∩∩∩∩∩ v are well defined in E, and by (2) belong to G. Again by [7, Proposition 3.4],
x = a⊔ b, y = c⊔ d, u = a⊔ c and v = b⊔ d. It remains to observe that the expressions f ⊔ g
and f ⊕ g mean the same in a Riesz space.

Example 3. Let Ω, Y be nonempty sets and G be a set of functions f : X → Y , where
X ⊆ Ω. Define a partial order ⪯ on G by setting g ⪯ f provided g is a restriction of f .
Suppose that the empty function ∅ : ∅ → Y belongs to G, and the following implication
holds: if f, g ∈ E with f : X → Y and g = f |X′ for some subset X ′ of X then h = f |X\X′ ∈ G
as well. Then (G,⪯) is a complementary space.

Next construction provides lots of new examples of complementary spaces. Informally
speaking, the disjoint union of complementary spaces with common zero element is a comple-
mentary space.

Example 4. Let
(
(Gi,⪯i)

)
i∈I be a family of complementary spaces such that Gi∩Gj = {0}

for all distinct i, j ∈ I, where 0 is the least element of each Gk, k ∈ I. Set G :=
⋃

i∈I Gi and
define a partial order on G by setting x ⪯ y provided there exists i ∈ I such that x, y ∈ Gi

and x ⪯i y. Obviously, (G,⪯) is a complementary space.

2.4. Selected properties of complementary spaces. Following [5], a Boolean algebra is
a distributive lattice with complements. Axiom (CS2) requires much less than the notion of
a distributive lattice. However, in couple with (CS1), it gives all a Boolean algebra needs, as
the following theorem asserts.

Theorem 1. For a PO-set (G,⪯) with a least element 0 the following assertions are equi-
valent:

(1) G is a complementary space;

(2) for every e ∈ G \ {0} the subset Fe is a Boolean algebra.

The proof of implication (1) ⇒ (2) is divided into several steps (lemmas), claiming certain
properties of a complementary space.

Lemma 1. Let (G,⪯) be a complementary space, w, x, y ∈ G, x†y and w ⪯ x ⊕ y. Then
there exist a unique pair of elements u ∈ Fx and v ∈ Fy such that w = u⊕ v.

Proof. By (1), x⊕ y = w ⊕
(
(x⊕ y)⊖ w

)
. Choose by (CS2) a, b, c, d ∈ G so that x = a⊕ b,

y = c⊕ d and w = a⊕ c. Then u := a and v := c are as desired.
To prove the uniqueness, assume u′ ∈ Fx and v′ ∈ Fy are such that w = u′ ⊕ v′ as well.

Now using the equality u⊕ v = u′ ⊕ v′, choose a′, b′, c′, d′ ∈ G so that u = a′ ⊕ b′, v = c′ ⊕ d′,
u′ = a′ ⊕ c′ and v′ = b′ ⊕ d′. Since b′ ⪯ u ⪯ x and b′ ⪯ v′ ⪯ y, the separateness of x and y
implies b′ = 0. In a similar way, c′ ⪯ u′ ⪯ x and c′ ⪯ v′ ⪯ y yield c′ = 0. This is why u = u′

and v = v′, that means the uniqueness.
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Lemma 2. Let (G,⪯) be a complementary space and x, y, z be pairwise separate elements
of G. If x⊕ y exists then (x⊕ y)†z.

Proof. Let w be any lower bound for the set {x⊕y, z}. Using w ⪯ x⊕y, choose by Lemma 1
u ∈ Fx and v ∈ Fy so that w = u ⊕ v. Then the conditions u ⪯ w ⪯ z, u ⪯ x and z†x
imply u = 0. Likewise the conditions v ⪯ w ⪯ z, u ⪯ y and z†y imply v = 0. The latter two
conclusions yield w = 0 and so (x⊕ y)†z.

Lemma 3. Let (G,⪯) be a complementary space, x, y, u, v, e ∈ G with e = x ⊕ y = u ⊕ v.
Then there are unique elements a, b, c, d ∈ G such that x = a⊕ b, y = c⊕ d, u = a⊕ c and
v = b⊕ d.
Moreover, (1) the elements a, b, c, d are pairwise separated; (2) a = x∩∩∩∩∩∩∩∩∩u, b = x∩∩∩∩∩∩∩∩∩v, c = y∩∩∩∩∩∩∩∩∩u,
d = y∩∩∩∩∩∩∩∩∩ v.

Proof. Choose by definition a, b, c, d ∈ G such that x = a ⊕ b, y = c ⊕ d, u = a ⊕ c and
v = b⊕ d. First we prove that a, b, c, d are pairwise separated. One has a†b, c†d, a†c and b†d
by definition. The rest of separateness conditions a†d and b†c easily follow from the condition
x†(e− x), see (1).

Now we prove that a = x∩∩∩∩∩∩∩∩∩ u. Obviously, a is a lower bound for {x, u}. Let w be any
lower bound for {x, u}. Since w ⪯ x = a ⊕ b, by Lemma 1, w = w′ ⊕ wb for some w′ ∈ Fa

and wb ∈ Fb. Observe that wb ⪯ w ⪯ a ⊕ c, wb ⪯ b and (a ⊕ c)†b by Lemma 2. Therefore,
wb = 0. Hence w = w′, which yields w ⪯ a. So a = x∩∩∩∩∩∩∩∩∩ u is proved.

The rest of formulas in (2) can be proved analogously. These formulas imply the uni-
queness of a, b, c, d.

Now using Lemma 3, we can rewrite Lemma 1 in more details.

Corollary 2. Let (G,⪯) be a complementary space, w, x, y ∈ G, x†y and w ⪯ x⊕ y. Then
there exist a unique pair of elements u ∈ Fx and v ∈ Fy such that w = u⊕ v. More precisely,
w = (w∩∩∩∩∩∩∩∩∩ x)⊕ (w∩∩∩∩∩∩∩∩∩ y).

Proof. Indeed, in the proof of Lemma 1 we got w = a ⊕ c, and by Lemma 3 (2), a = x∩∩∩∩∩∩∩∩∩ w
and c = y∩∩∩∩∩∩∩∩∩ w.

The following statement shows that Fe is a lattice for every nonzero element e of G.

Lemma 4. Let (G,⪯) be a complementary space, e ∈ E and x, y ∈ Fe. Then there exist
x∩∩∩∩∩∩∩∩∩ y and x∪∪∪∪∪∪∪∪∪ y in G (and hence, in Fe). Moreover,

x∪∪∪∪∪∪∪∪∪ y = e⊖
(
(e⊖ x)∩∩∩∩∩∩∩∩∩ (e⊖ y)

)
. (2)

Proof. Taking into account the equalities e = x⊕ (e⊖ x) = y ⊕ (e⊖ y), choose a, b, c, d ∈ G
so that x = a ⊕ b, e ⊖ x = c ⊕ d, y = a ⊕ c and e ⊖ y = b ⊕ d. By Lemma 3, a = x∩∩∩∩∩∩∩∩∩ y,
b = x∩∩∩∩∩∩∩∩∩ (e⊖ y), c = y∩∩∩∩∩∩∩∩∩ (e⊖ x) and d = (e⊖ x)∩∩∩∩∩∩∩∩∩ (e⊖ y). The existence of x∩∩∩∩∩∩∩∩∩ y is obtained.
To prove both the existence of x∪∪∪∪∪∪∪∪∪ y and (2), we show that e⊖ d = x∪∪∪∪∪∪∪∪∪ y.

Using x ⪯ e = d⊕ (e⊖d), choose by Lemma 1 x′ ∈ Fd and x′′ ∈ Fe⊖d so that x = x′⊕x′′.
Since x†(e ⊖ x), x′ ⪯ x and d ⪯ (e ⊖ x), one has x′†d, which together with x′ ⪯ d implies
x′ = 0. Hence, x = x′′ ⪯ e⊖d. Analogously, y ⪯ e⊖d and so e⊖d is an upper bound for {x, y}
in G. Let w ∈ G be any upper bound for {x, y}. Write e⊖ d ≤ e = x⊕ (e⊖ x) = x⊕ (c⊕ d)
and use Lemma 3 to obtain v′ ∈ Fx and v′′ ∈ Fc⊕d so that

e⊖ d = v′ ⊕ v′′. (3)
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Using v′′ ⪯ c ⊕ d, choose by Lemma 3 vc ∈ Fc and vd ∈ Fd so that v′′ = vc ⊕ vd. Then
vd ⪯ d and vd ⪯ e ⊖ d imply vd = 0. Hence v′′ = vc which yields v′′ ⪯ c ⪯ y. Since w is an
upper bound for {x, y}, we obtain that w is an upper bound for smaller elements {v′, v′′}.
By (3), e⊖ d ⪯ w and so e⊖ d = x∪∪∪∪∪∪∪∪∪ y.

Remark 2. Let (G,⪯) be a complementary space, e ∈ E, A ⊆ Fe. Once
⋃⋃⋃⋃⋃⋃⋃⋃⋃
A exists in G,

since e is an upper bound for A, one has
⋃⋃⋃⋃⋃⋃⋃⋃⋃
A ∈ Fe and hence

⋃⋃⋃⋃⋃⋃⋃⋃⋃
A is the same in Fe and G.

Likewise, if
⋂⋂⋂⋂⋂⋂⋂⋂⋂
A exists in G then

⋂⋂⋂⋂⋂⋂⋂⋂⋂
A ∈ Fe and hence

⋂⋂⋂⋂⋂⋂⋂⋂⋂
A is the same in Fe and G.

Since Fe by Lemma 4 is a lattice, [5, Lemma 1 of Section 1.5] yields the associativity of
the lattice operations on Fe, including the direct sum ⊕.

Corollary 3. Let (G,⪯) be a complementary space, e ∈ E \ {0} and x, y, z ∈ Fe. Then
(x∪∪∪∪∪∪∪∪∪ y)∪∪∪∪∪∪∪∪∪ z = x∪∪∪∪∪∪∪∪∪ (y∪∪∪∪∪∪∪∪∪ z); (x∩∩∩∩∩∩∩∩∩ y)∩∩∩∩∩∩∩∩∩ z = x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z). If, moreover, x†y, y†z and z†x then
(x⊕ y)⊕ z = x⊕ (y ⊕ z).

Using the above associativity, we obtain some more properties.

Corollary 4. Let (G,⪯) be a complementary space, e ∈ E \ {0} and x, y ∈ Fe. Then

(1) e = (x∩∩∩∩∩∩∩∩∩ y)⊕
(
x∩∩∩∩∩∩∩∩∩ (e⊖ y)

)
⊕

(
(e⊖ x)∩∩∩∩∩∩∩∩∩ y

)
⊕
(
(e⊖ x)∩∩∩∩∩∩∩∩∩ (e⊖ y)

)
;

(2) x∪∪∪∪∪∪∪∪∪ y = (x∩∩∩∩∩∩∩∩∩ y)⊕
(
x∩∩∩∩∩∩∩∩∩ (e⊖ y)

)
⊕
(
(e⊖ x)∩∩∩∩∩∩∩∩∩ y

)
.

Proof. (1) By Lemma 3 and the associativity of ⊕, e = a⊕ b⊕ c⊕ d, that is, (1) holds.
(2) follows from (1) and Lemma 4.

Using induction and associativity, one can easily obtain the following generalization of
Corollary 2 from two to an arbitrary finite number of summands.

Corollary 5. Let (G,⪯) be a complementary space, n ∈ N, w ∈ G and x1, . . . , xn be
pairwise separate elements of G such that w ⪯ x1 ⊕ . . . ⊕ xn. Then there exists a unique
collection of elements yi ∈ Fxi

for i = 1, . . . , n such that w = y1 ⊕ . . . ⊕ yn. More precisely,
w = (w∩∩∩∩∩∩∩∩∩ x1)⊕ . . .⊕ (w∩∩∩∩∩∩∩∩∩ xn).

As a further consequence, we obtain a distributivity law for direct sums.

Corollary 6. Let (G,⪯) be a complementary space, n ∈ N, w ∈ G and x1, . . . , xn be
pairwise separate elements of G. If w∩∩∩∩∩∩∩∩∩ (x1 ⊕ . . .⊕ xn) exists in G then

w∩∩∩∩∩∩∩∩∩ (x1 ⊕ . . .⊕ xn) = (w∩∩∩∩∩∩∩∩∩ x1)⊕ . . .⊕ (w∩∩∩∩∩∩∩∩∩ xn).

Proof. Observe that w∩∩∩∩∩∩∩∩∩ (x1 ⊕ . . .⊕ xn) ⪯ x1 ⊕ . . .⊕ xn and(
w∩∩∩∩∩∩∩∩∩ (x1 ⊕ . . .⊕ xn)

)
∩∩∩∩∩∩∩∩∩ xk = w∩∩∩∩∩∩∩∩∩

(
(x1 ⊕ . . .⊕ xn)∩∩∩∩∩∩∩∩∩ xk

)
= w∩∩∩∩∩∩∩∩∩ xk,

because xk ⪯ x1 ⊕ . . .⊕ xn for all k = 1, . . . , n. Then use Corollary 5.

By induction and the associativity of the direct sum, one can obtain the following con-
sequence of (CS2), which is an analogue of the Riesz decomposition property [1, Theo-
rem 1.20].

Corollary 7. Let (G,⪯) be a complementary space, m,n ∈ N. Let x1, . . . , xm and y1, . . . yn
be two finite collections of pairwise separate elements of G such that

x1 ⊕ x2 ⊕ . . .⊕ xm = y1 ⊕ y2 ⊕ . . .⊕ yn.

Then there exists a collection {zi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} in G such that
(∀i ∈ {1, 2, . . . ,m}) xi = zi,1 ⊕ zi,2 ⊕ . . .⊕ zi,n, (∀j ∈ {1, 2, . . . , n}) yj = z1,j ⊕ z2,j ⊕ . . .⊕ zm,j.
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. Implication (2) ⇒ (1) is obvious, so we prove (1) ⇒ (2). Fix any e ∈
G \ {0} and prove that Fe is a Boolean algebra. By (CS1), it is enough to prove that Fe

is a distributive lattice. By Lemma 4, Fe is a lattice. It remains to prove the distributivity.
By [5, Theorem 9 of Section 1], it is enough to prove only one of the two distributivity laws.
Fix any x, y, z ∈ Fe and set

L := x∩∩∩∩∩∩∩∩∩ (y∪∪∪∪∪∪∪∪∪ z), R := (x∩∩∩∩∩∩∩∩∩ y)∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ z).

Our goal is to prove the equality L = R. The inequality R ⪯ L is clear, because L is an
upper bound for the two-point set {x∩∩∩∩∩∩∩∩∩y, x∩∩∩∩∩∩∩∩∩z}, and R is the least upper bound for the same
set. To show the converse inequality, observe that since z ⪰ x∩∩∩∩∩∩∩∩∩z, one has e⊖z ⪯ e⊖ (x∩∩∩∩∩∩∩∩∩z).
Hence

x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩ (e⊖ z) ⪯ x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩
(
e⊖ (x∩∩∩∩∩∩∩∩∩ z)

)
. (4)

Analogously,
x∩∩∩∩∩∩∩∩∩ z∩∩∩∩∩∩∩∩∩ (e⊖ y) ⪯ x∩∩∩∩∩∩∩∩∩ z∩∩∩∩∩∩∩∩∩

(
e⊖ (x∩∩∩∩∩∩∩∩∩ y)

)
. (5)

Then

L = x∩∩∩∩∩∩∩∩∩ (y∪∪∪∪∪∪∪∪∪ z)
4 (2)
= x∩∩∩∩∩∩∩∩∩

(
(y∩∩∩∩∩∩∩∩∩ z)⊕ (y∩∩∩∩∩∩∩∩∩ (e⊖ z))⊕ ((e⊖ y)∩∩∩∩∩∩∩∩∩ z)

)
=

6
= (x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩ z)⊕

(
x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩ (e⊖ z)

)
⊕
(
x∩∩∩∩∩∩∩∩∩ (e⊖ y)∩∩∩∩∩∩∩∩∩ z

) (4),(5)

⪯

⪯(x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩ z)⊕
(
x∩∩∩∩∩∩∩∩∩ y∩∩∩∩∩∩∩∩∩

(
e⊖ (x∩∩∩∩∩∩∩∩∩ z)

))
⊕

(
x∩∩∩∩∩∩∩∩∩

(
e⊖ (x∩∩∩∩∩∩∩∩∩ y)

)
∩∩∩∩∩∩∩∩∩ z

) 4 (2)
= (x∩∩∩∩∩∩∩∩∩ y)∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ z) = R.

Thus, L ⪯ R, which together with R ⪯ L implies L = R and the theorem is proved.

As partial cases, Theorem 1 gives characterizations of a Boolean algebra and a Boolean
ring in terms of two axioms.

Corollary 8.

(1) A PO set (B,⪯) with a least and a greatest elements is a Boolean algebra if and only
if the following conditions hold:
(a) for every x, y ∈ B with y ⪯ x there exists z ∈ B such that x = y ⊕ z;
(b) for every x, y, u, v ∈ B with x ⊕ y = u ⊕ v there exist a, b, c, d ∈ B such that

x = a⊕ b, y = c⊕ d, u = a⊕ c and v = b⊕ d,
where w = w1 ⊕ w2 means that inf{w1, w2} = minB and sup{w1, w2} = w.

(2) A directed PO set (B,⪯) with a least element is a Boolean ring if and only if (a) and
(b) hold.

3. Vector charges on complementary spaces.

Definition 4. Let (G,⪯) be a complementary space and F a Riesz space. A function T : G →
F is called a vector charge, if for every elements x, y, z of E with x = y ⊕ z one has Tx =
Ty + Tz. In the partial case where F = R we use the term scalar charge instead of “vector
charge”.

Since x = 0⊕ x for every x ∈ G, every vector charge sends zero of G to zero of F .
If G is a Riesz space with the lateral order then A(G,F ) coincides with the set OA(G,F )

of all orthogonally additive operators T : G → F .
The set A(G,F ) of all vector charges T : G → F is naturally endowed with the obvious

vector space structure inspired by that of F .
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Definition 5. Let (G,⪯) be a complementary space and F a Riesz space. A vector charge
T ∈ A(G,F ) is said to be:

• positive (write T ≥ 0), if Tx ≥ 0 for all x ∈ E;

• regular, if T equals a difference of two positive vector charges T = T1−T2, Ti ∈ A(G,F ),
i = 1, 2. The set of all regular vector charges T ∈ A(E,F ) is denoted by Ar(G,F );

• C-bounded, if for every g ∈ G the set T (Fg) is order bounded in F . The set of all
C-bounded vector charges T ∈ A(G,F ) is denoted by Ab(G,F ).

Obviously, the vector space A(G,F ) is an ordered vector space with respect to the order
S ≤ T if and only if T − S ≥ 0 for all S, T ∈ A(G,F ), and the sets Ar(G,F ) and Ab(G,F )
are vector subspaces of A(G,F ).

The following theorem in the main result of the paper.

Theorem 2. Let (G,⪯) be a complementary space and F a Dedekind complete Riesz space.
Then the following assertions hold:

(1) Ar(G,F ) = Ab(G,F ).

(2) Ab(G,F ) is a Dedekind complete Riesz space and the lattice operations satisfy the
following formulas for all S, T ∈ Ab(G,F ) and x ∈ G:

(a) (S ∨ T )x = sup {Sy + Tz : y, z ∈ G with x = y ⊕ z}.
(b) (S ∧ T )x = inf {Sy + Tz : y, z ∈ G with x = y ⊕ z}.
(c) (T+)x = supT (Fx).
(d) (T−)x = − inf T (Fx).
(e) |T |x = sup {Ty − Tz : y, z ∈ G with x = y ⊕ z}.
(f) |Tx| ≤ |T |x.

Proof. Observe that (1) is an easy consequence of (2). Indeed, the inclusion Ar(G,F ) ⊆
Ab(G,F ) is obvious, and by (c) and (d), every element of Ab(G,F ) is a difference of two
positive vector charges.

Fix any S, T ∈ Ab(G,F ) and prove the existence of S ∨ T . For every x ∈ G we set

Rx := sup {Sy + Tz : y, z ∈ G with x = y ⊕ z} (6)

(the supremum exists, because S and T are C-bounded and at least one decomposition exists
x = 0⊕ x) and prove that R is a vector charge.

Fix any u, v, w ∈ G with w = u ⊕ v. Now fix any v′, v′′ ∈ G with v = v′ ⊕ v′′. Then for
any u′, u′′ ∈ G with u = u′ ⊕ u′′ one has by Corollary 3

w = (u′ ⊕ u′′)⊕ (v′ ⊕ v′′) = (u′ ⊕ v′)⊕ (u′′ ⊕ v′′)

and by (6) we obtain
Su′ + Tu′′ + Sv′ + Tv′′ = S(u′ ⊕ v′) + T (u′′ ⊕ v′′) ≤ Rw.

Since for any u′, u′′ ∈ G with u = u′ ⊕ u′′ we got Su′ + Tu′′ ≤ Rw − Sv′ − Tv′′, one
has by (6) Ru ≤ Rw − Sv′ − Tv′′, that is, Sv′ + Tv′′ ≤ Rw − Ru. By the arbitrariness of a
decomposition v = v′ ⊕ v′′, we obtain Rv ≤ Rw −Ru, that is,

Ru+Rv ≤ Rw. (7)
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Now we prove the converse inequality. Let x, y ∈ G be any elements such that w = x⊕y.
Using that w = u⊕ v, choose by (CS2) a, b, c, d ∈ G so that x = a⊕ b, y = c⊕ d, u = a⊕ c
and v = b⊕ d. Then

Sx+ Ty = S(a⊕ b) + T (c⊕ d) = Sa+ Tc+ Sb+ Td ≤ Ru+Rv.
By the arbitrariness of x, y ∈ G with w = x⊕ y, we obtain Rw ≤ Ru+ Rv. Taking into

account (7), we deduce Rw = Ru+Rv, and so R is a vector charge.
Moreover, R ∈ Ab(G,F ). Indeed, given any g ∈ G, let the set S(Fg) be order bounded

by some fS ∈ F and the set T (Fg) be order bounded by some fT ∈ F . Then for any x ∈ Fg

and any y, z ∈ G with x = y ⊕ z one has y, z ∈ Fg and hence Sy + Tz ≤ fS + fT , which
yields Rx ≤ fS + fT by the arbitrariness of the decomposition x = y ⊕ z.

Now we show that R = S ∨ T in Ab(G,F ). Obviously, R is an upper bound for {S, T}.
Let W ∈ Ab(G,F ) be any upper bound for {S, T}. Fix any x ∈ G. Then for every y, z ∈ G
with x = y ⊕ z one has Sy + Tz ≤ Wy +Wz = Wx. By the arbitrariness of y, z ∈ G, we
obtain Rx ≤ Wx. Hence R ≤ W by the arbitrariness of x ∈ G. Therefore, R = S ∨T . Thus,
Ab(G,F ) is a Riesz space and (a) holds. It remains to show (b)–(f).
(b) For every x ∈ G by [1, Theorem 1.3],
(S ∧ T )x = −

(
(−S) ∨ (−T )

)
x = − sup{−Sy − Tz : x = y ⊕ z} = inf{Sy + Tz : x = y ⊕ z}

and (b) is proved.
(c) For every x ∈ G by (a) one has
(T+)x = (T ∨ 0)x = sup{Ty : y, z ∈ G with x = y ⊕ z} = sup{Ty : y ⪯ x} = supT (Fx).

(d) easily follows from (c).
(e) can be proved using (a) similarly like we did prove (c).
(f) follows from (e).

As a partial case of Theorem 2, where the complementary space (G,⪯) is an arbitrary
Riesz space E with the lateral order ⊑ on E, we obtain the Pliev-Ramdane [10, Theorem 3.6].

4. Applications to a model of an economy with an arbitrary commodity set.
Consider a model of an economy with infinitely many commodities, which are exchanged,
produced or consumed. Following classical approaches (see e.g. [2]), outputs of production are
positively signed, and inputs are negatively signed. In the classical Arrow-Debreu model [3],
the set of all commodity bundles is the finite dimensional Riesz space E = Rd, where d
is the amount of goods. The rules for exchanging goods are given by a fixed vector p =
(p1, . . . , pd) ∈ Rd. More precisely, pi

pj
is the amount of good j, which can be exchanged for a

unit amount of good i at prices p. Now the value of a commodity vector x = (x1, . . . , xd) ∈ Rd

is defined by the scalar product (p,x) =
∑d

k=1 pkxk, or, as the value of a suitable linear
functional on Rd. So the price space is the vector dual space E ′ = Rd, which can be identified
with E in the finite dimensional case. The Riesz space structures of both commodity and
price spaces are of great importance, because both commodity bundles and prices must be
comparable with other commodity bundles and prices respectively. A preference relation on
a set is a defined to be a linear order on the set. In a lot of natural cases, a preference relation
≤≤≤≤≤≤≤≤≤ on a set X is induced by a suitable utility function u : X → R by setting x ≤≤≤≤≤≤≤≤≤ y if and
only if u(x) ≤ u(y) [2, Theorem 1.1.4]. There are also models considering infinite commodity
sets, see e.g. [4].

In the present section, we offer some amendments to the Arrow-Debreu model. One is
that we generalize functionals to scalar charges in place of prices. The reason is that, in real
economics, prices often become cheaper for bigger amount of goods. So the wholesale prices
are not linear functionals, but sometimes they are charges in the sense that the price for the
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union of two separate groups of goods equals the sum of their prices. There are also examples
in economics, where the price per unit of a product increases with the quantity purchased.
This phenomenon is known as negative economies of scale or quantity-based price discrimi-
nation. Another amendment is that we are going to consider a complementary space G in
place of a Riesz space E. Since a disjoint union of complementary spaces is a complementary
space (and the same is false for Riesz spaces), it allows considering unions of markets to a
larger market in the case, where goods from different markets are incompatible by prices, or
by other valuable characteristics. Another superiority of such an approach: we can consider
the positive cone G = (Rn)+ as a complementary space with the lateral order, however the
same set is not a Riesz space.

Let (G,⪯) be a complementary space. Elements of G are commodity vectors, and elements
of Ab(G,R) are prices. The number P (x) is called the value of a commodity vector x by a
price P ∈ Ab(G,R). A price P ∈ A+

b (G,R) is said to be positive. A price P is called strictly
positive (write P >> 0) provided Px > 0 for all x ∈ G \ {0}. Finally, the complementary
space G with such an interpretation we call a complementary commodity space, or CC-space
in short.

Now fix some commodity vector g ∈ G and some positive price P ∈ A+
b (G,F ).

Definition 6. The budget set for P corresponding to a number λ > 0 is defined by setting
Bλ(P ) = {x ∈ G : P (x) ≤ λ}.

Definition 7. Given a preference relation ≤≤≤≤≤≤≤≤≤ on a CC-space G and a subset A of G,
a commodity vector x0 ∈ A such that x ≤≤≤≤≤≤≤≤≤ x0 for all x ∈ A is called the demand vector
of A.

Since a preference relation is a linear order on G, the demand vector is unique, whenever
exists.

Consider the following problem.

Problem 1. Let (G,⪯) be a CC-space, P ∈ A+
b (G,R) a given positive price and ≤≤≤≤≤≤≤≤≤

a preference relation on G. Characterize the set of all λ > 0 for which the budget set
Bλ(P ) has a demand vector.

Below we solve this problem for the CC-space, which equals the positive cone of Rd with
the lateral order, and the preference relation equals the lexicographical order.

Recall that the lexicographical order ≤n on Rd, d ∈ N is defined recursively as follows:
≤1 coincides with the natural order on R, and for every two elements x = (x1, . . . , xd) and
y = (y1, . . . , yd) we set x <d y if and only if either x1 < y1, or x1 = y1 and (x2, . . . , xd) <d−1

(y2, . . . , yd). Then, as usual, x ≤d y means that either x <d y, or x = y.
Now consider the positive cone of Rd, that is, G = (Rd)+ = {x ∈ Rd : x ≥ 0}, where

by ≤ we denote the usual lattice order on Rd, where x ≤ y means that xk ≤ yk for all
k ∈ {1, . . . , d}. Then G is a CC-space with respect to the lateral order x ⊑ y if and only if
x ⊥ (y − x), that is, |x| ∧ |y − x| = 0.

Let P ∈ A+
b (G,R) be any positive price and (ek)

d
k=1 be the unit vector basis of Rd, that

is, ek = (0, . . . 0︸ ︷︷ ︸
k−1

, 1, 0, . . . 0). Observe that every commodity vector x = (x1, . . . , xd) ∈ G is

represented as the direct sum x = (x1 ·e1)⊕ . . .⊕(xd ·ed). Hence, the value of the commodity
vector x equals P (x) =

∑d
k=1 P (xk · ek). Now define the coordinate functions φP

k : R+ → R+

of a price P by setting
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φP
k (t) = P (t · ek), k ∈ {1, . . . , d}.

Actually, we have proved the following elementary statement.

Proposition 2. The value of any commodity vector x = (x1, . . . , xd) ∈ (Rd)+ under a price
P ∈ A+

b ((Rd)+,R) equals
P (x) =

d∑
k=1

φP
k (xk),

where (φP
k )

d
k=1 are coordinate functions of P .

The following proposition is easy to prove.

Proposition 3. (1) A price P ∈ A+
b

(
(Rd)+,R) is strictly positive if and only if all coordi-

nate functions φk of P are strictly positive, that is, for every t > 0 one has φk(t) > 0.
(2) Functions φk : R+ → R, k ∈ {1, . . . , d} are coordinate functions of some price P ∈

A+
b

(
(Rd)+,R) if and only if φk(0) = 0 for all k.

Theorem 3. Let P >> 0 be a price in Ab

(
(Rd)+,R) with coordinate functions (φP

k )
d
k=1

such that φP
1 is monotone and continuous. Then for every λ > 0 the following assertions

are equivalent: (1) the budget set Bλ(P ) has a demand vector; (2) λ ∈ (0, µ), where
µ := supφP

1 (R+) ∈ [0,+∞] and φP
1 is the first coordinate function of P .

Moreover, the demand vector of Bλ(P ) has the form x0 = (t0, 0, . . . , 0) in case of existence.

Proof. Since φP
1 (0) = 0, the monotonicity assumption on φP

1 means that it is (non-strictly)
increasing.

(2) ⇒ (1). Fix any λ ∈ (0, µ). By the continuity of φP
1 , the set {t > 0 : φP

1 (t) = λ}
is nonempty and compact, and so contains a greatest element t0. Show that the bundle
vector x0 = (t0, 0, . . . , 0) is the demand vector of Bλ(P ). Assume, on the contrary, that
there exists x = (x1, . . . , xd) ∈ R+ such that x0 <d x and P (x) ≤ λ. If t0 < x1 then
λ = φP

1 (t0) < φP
1 (x1) ≤ P (x) by the choice of t0, a contradiction. Now let t0 = x1 and

(0, . . . , 0) <d−1 (x2, . . . , xd). Choose k ∈ {2, . . . , d} so that xk > 0. Since P >> 0, the latter
inequality implies φP

k (xk) > 0. Then P (x) ≥ φP
1 (x1) + φP

k (xk) > φP
1 (x1) = φP

1 (t0) = λ, a
contradiction. Thus, x0 is the demand vector of Bλ(P ).

(2) ⇒ (1). Assume, on the contrary, that λ ≥ µ (in particular, it follows that µ < ∞).
Let x0 = (x0

1, . . . , x
0
d) be the demand vector of Bλ(P ). Consider cases.

Case 1: x0
2 = . . . = x0

d = 0. Then for x1 := (x0
1 + 1, 0, . . . , 0) we obtain P (x1) =

φP
1 (x

0
1 + 1) ≤ µ ≤ λ and x0 <d x1, which contradicts the choice of x0.

Case 2: there exists k > 1 such that xk > 0. Set ε := φP
k (xk). Since P >> 0, one has

ε > 0. Choose by the continuity of φP
1 a number δ > 0 such that for every t ≥ 0 if |t−x0

1| < δ
then |φP

1 (t) − φP
1 (x

0
1)| < ε. Now set t0 := x0

1 + δ/2. Then φP
1 (x

0
1) ≤ φP

1 (t0) < φP
1 (x

0
1) + ε.

Hence for x1 := (t0, x
0
2, . . . , x

0
k−1, 0, x

0
k+1, . . . , x

0
d) we obtain

P (x1)− P (x0) = φP
1 (t0)− φP

1 (x
0
1)− φP

k (x
0
k) < ε− φP

k (x
0
k) = 0.

Therefore, P (x1) ≤ P (x0) ≤ λ. On the other hand, the inequality x0
1 < t0 yields x0 <d x1,

which contradicts the choice of x0.
Finally, the proof of implication (2) ⇒ (1) contains an argument showing that any demand

vector Bλ(P ) has the form x0 = (t0, 0, . . . , 0).
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