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Let H be a separable Hilbert space, and let H be the Hilbert space of square integrable
functions f : R → H. In this paper, we consider the reflectionless Schrödinger operator Tqf =
−f ′′+qf acting in H and study the corresponding Jost solutions, i.e., solutions of the equation

−y′′ + qy = λ2y

with a reflectionless operator-valued potential q. In particular, we provide an explicit formula
for the Jost solutions in terms of solutions of the Riccati equation

S′(x) = KS(x) + S(x)K − 2S(x)KS(x), x ∈ R,

where K ∈ B+(H)\{0}, S : R → B(H). Here B(H) is the Banach algebra of all linear continuous
operators acting in H, and B+(H) = {A ∈ B(H) | A ≥ 0}.

1. Introduction. This paper continues the research presented in [1] and is devoted to the
investigation of Jost solutions of the equation

−y′′ + qy = λ2y (λ ∈ C) (1)

with a reflectionless operator-valued potential q. The obtained results are intended to be
used for solving inverse spectral problems for the operators Tq = −d2/dx2 + q.

Reflectionless potentials of the Schrödinger operator. Let H be a separable Hilbert
space with the inner product (· | ·) that is linear in the first argument. Denote by B(H) the
Banach algebra of all everywhere-defined linear continuous operators A : H → H, and by
Binv(H) the group of all invertible operators in B(H). Furthermore, let B+(H) be the cone
of nonnegative operators, and let I be the identity operator in B(H). The domain, range,
kernel, and the spectrum of a linear operator will be denoted by dom(·), ran(·), ker(·), and
σ(·), respectively. For arbitrary operators A,B ∈ B(H), we write A < B if A ≤ B and
ker(B − A) = {0}. If a sequence (An)n∈N in B(H) converges to an operator A in the strong
operator topology, we write A = s-lim

n→∞
An.

Let H := L2(R, H) be the Hilbert space of square integrable functions f : R → H with
the inner product

(f | g)H :=

∫
R
(f(x) | g(x)) dx, f, g ∈ H.
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Denote by Cb(R,B(H)) the linear space of all continuous bounded functions f : R → B(H).
To simplify notation, we will use the following abbreviations for a function z 7→ F (z) ∈

B(H): (F (z))∗ := F ∗(z), (F (z))−1 := F−1(z).
We associate every potential q ∈ Cb(R,B(H)) with the Schrödinger operator Tq : H → H

defined by
Tqf = −f ′′ + qf

on the domain domTq := W 2
2 (R, H), where W 2

2 (R, H) is the Sobolev space of H-valued
functions. If the potential q belongs to the set

Cb,s := {q ∈ Cb(R,B(H)) | ∀x ∈ R q∗(x) = q(x)},

then the operator Tq is self-adjoint.
Let q ∈ Cb,s and z ∈ C. Consider the equation

−y′′ + qy = zy. (2)

As shown in [2], for every z ∈ C \ R, there exist the Weyl–Titchmarsh B(H)-valued right
f+(z, ·) and left f−(z, ·) normalized solutions of the equation (2), i.e., the solutions that
satisfy the condition

f+(z, 0) = f−(z, 0) = I,

and for every h ∈ H ∫
R±

∥f±(z, x)h∥2 dx < ∞.

The functions
m±(z) := f ′

±(z, 0), z ∈ C \ R,

are called the Weyl–Titchmarsh m-functions of the equation (2) on the half-lines R±. It is
known (see [2]) that the equalities

m±(z̄) = m∗
±(z), z ∈ C \ R,

hold, and the functions m+ and −m− are Herglotz functions in the upper half-plane, i.e.,

± Imm±(z) ≥ 0, z ∈ C+.

Definition 1. Let q ∈ Cb,s and m± be the Weyl–Titchmarsh functions of the equation (2).
We call the potential q (the operator Tq) reflectionless if the B(H)-valued function

nq(λ) :=

{
m+(λ

2), Imλ > 0, Reλ ̸= 0;
m−(λ

2), Imλ < 0, Reλ ̸= 0,

has an analytic continuation to the domain C \ iR. Denote by Q the set of all reflectionless
potentials q ∈ Cb,s.

An operator Riccati equation and reflectionless potentials. In this subsection, we
briefly summarize the results of [1] that will be used in this paper. We consider the operator
Riccati equation

S ′(x) = KS(x) + S(x)K − 2S(x)KS(x), x ∈ R, (3)
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where K ∈ B+(H), K > 0 and S : R → B(H). It follows from [1] that if the solution S of
the equation (3) satisfies the condition 0 < S(0) < I, then

0 < S(x) < I, x ∈ R.

Moreover, S has an analytic continuation in the strip

ΠK :=
{
z = x+ iy | x, y ∈ R, |y| < π

2∥K∥

}
.

This continuation is given by the formula

S(z) = ezK(S−1(0)− I + e2zK)−1ezK , z ∈ ΠK , (4)

and the estimate

∥S(z)∥ ≤ [cos (y∥K∥)]−1, z ∈ ΠK , y = Im z,

holds. If, additionally, S satisfies the condition S ′(0) ≥ 0, then S ′(x) ≥ 0 for all x ∈ R, and

0 ≤ S(x1) ≤ S(x2) ≤ I, x1 ≤ x2.

Definition 2. Let S (K) be the set of all solutions S of the equation (3) such that 0 <
S(0) < I, S ′(0) ≥ 0. A function S ∈ S (K) is called regular if the operators S(0) and
I − S(0) belong to Binv(H). Denote by Sreg(K) the set of all regular functions S ∈ S (K).

Remark 1. In comparison with [1], we have simplified the notation. Namely, we use the
notations S (K) (Sreg(K)) instead of S +(K) (S +

reg(K)).

For every function S ∈ S (K), we associate the operators

Γ := ΓS := S−1(0)− I, R := RS := |S ′(0)|1/2S−1(0),

and construct the following analytic operator-valued functions in ΠK :

L(z) := LS(z) := ezK(I − S(z)) + e−zKS(z),

Ψ(z) := ΨS(z) := |S ′(0)|1/2L(z),
q(z) := qS(z) := −4ΨS(z)KΨ∗

S(z̄).

(5)

The main result of [1] is the following theorem.

Theorem 1 ([1]). Let S ∈ S (K) and q = qS. Then q is a reflectionless potential and

∥q(z)∥ ≤ 2∥K∥2

cos2(y∥K∥)
, z ∈ ΠK , y = Im z.

In addition to Theorem 1, we also need other results of [1]. We present them in the form
of the following four propositions.

Proposition 1 ([1]). Let S ∈ S (K) and

Sε(x) = exK(B−1
ε − I + e2xK)−1exK , x ∈ R, ε ∈ (0, 1/2),

where Bε := εI+(1−2ε)S(0). Then Sε ∈ Sreg(K) for all ε ∈ (0, 1/2). Moreover, if Ψε = ΨSε

and qε = qSε , then

∥S(z)− Sε(z)∥ = o(1), ∥Ψ(z)−Ψε(z)∥ = o(1), ∥q(z)− qε(z)∥ = o(1) (6)

as ε → 0 uniformly on compact sets in ΠK .
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Proposition 2 ([1]). Let S ∈ S (K). Then

−Ψ′′(x) + q(x)Ψ(x) = −Ψ(x)K2, x ∈ R, (7)
S ′(x) = Ψ∗(x)Ψ(x), x ∈ R,

and

∥Ψ(z)∥ ≤ π∥K∥1/2

2 cos(y∥K∥)
, z ∈ ΠK , y = Im z.

If, additionally, S ∈ Sreg(K), then R,Γ ∈ B(H) and

Ψ(z) = Re−zKS(z), z ∈ ΠK , (8)
KΓ + ΓK = R∗R. (9)

For an arbitrary K ∈ B+(H) \ {0}, we introduce the notation

O±(K) := {λ ∈ C | ±iλ /∈ σ(K)}, O(K) = O+(K) ∩ O−(K).

Proposition 3 ([1]). Let S ∈ S (K). Then the formula

M(λ) := I − 2Ψ(0)K(K2 + λ2I)−1Ψ∗(0) (10)

defines an analytic function in O(K). Moreover, the set

OM(K) := {λ ∈ O(K) | M(λ) ∈ Binv(H)}

is open, and its complement C \ OM(K) is a compact set lying on the imaginary axis.

Proposition 4 ([1]). Let S ∈ S (K), q = qS and

f(λ, x) := eiλx[I −Ψ(x)D(λ, x)Ψ∗(0)]M−1(λ), λ ∈ OM(K),

where
D(λ, x) := Kλe

−xK +K−λe
xK , Kλ := (K − iλI)−1.

Then

f(λ, ·) =

{
f+(λ

2, ·), λ ∈ C+ \ iR;
f−(λ

2, ·), λ ∈ C− \ iR,

where f±(z, ·) are the Weyl–Titchmarsh normalized solutions of the equation (2).

Generalization of the results from [1]. In [1], when defining the set S (K), we required
the operator K ∈ B+(H) to satisfy the condition K > 0. Within the framework of [1], this
was convenient as it simplified the proofs. However, all the above results from [1] remain
valid even without this condition.

Hereafter, we assume that K ∈ B+(H) \ {0}, and let P be the orthogonal projector that
projects H onto the subspace H1 := ranK. We set P⊥ := I − P and H0 := H⊥

1 .

Lemma 1. Let K ∈ B+(H) \ {0}, K1 := PK|H1 , and let S be a solution of equation (3)
satisfying 0 < S(0) < I and S ′(0) ≥ 0. Then

(1) for all x ∈ R we have S(x)P = PS(x), S ′(x)P⊥ = P⊥S ′(x) = 0;
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(2) for the function S the following decomposition holds: S(x) = S1(x) ⊕ S0(x), where
S1 ∈ S (K1), S0(x) ≡ S0(0), and Sj(x) = S(x)|Hj

(j ∈ {0, 1}), K1 > 0.

Proof. Let the conditions of Lemma be satisfied. It is easy to check that

S(x) = exK(S−1(0)− I + e2xK)−1exK , x ∈ R. (11)

Since KP⊥ = 0 = P⊥K and (see (3))

S ′(0) = KS(0) + S(0)K − 2S(0)KS(0),

we obtain
P⊥S ′(0)P⊥ = −2P⊥S(0)KS(0)P⊥.

Taking into account that S ′(0) ≥ 0, S(0) ≥ 0 and K ≥ 0, we conclude that

P⊥S(0)KS(0)P⊥ = 0 = P⊥S ′(0)P⊥,

and hence,
PS(0)P⊥ = 0 = P⊥S(0)P.

Therefore, the equality (11) implies

S(x)P = PS(x), S ′(x)P⊥ = P⊥S ′(x) = 0, x ∈ R. (12)

It follows from the above that H1 and H0 are invariant subspaces of S(x). It is easy to see
that the function S1(x) := S(x)|H1 is a solution of the Riccati equation with K1, i.e.,

S ′
1(x) = K1S1(x) + S1(x)K1 − 2S1(x)K1S1(x), x ∈ R.

Since 0 < S(0) < I and S ′(0) ≥ 0, we conclude that 0 < S1(0) < I and S ′
1(0) ≥ 0. Thus,

S1 ∈ S (K1). It also follows from (12) that the derivative of the function S0(x) := S(x)|H0

is identically zero, i.e., S0(x) ≡ S0(0).

The above arguments allow us to consider the sets S (K) and Sreg(K) for operators
K ∈ B+(H) that are not necessarily positive (i.e., omit the requirement that K > 0).
According to Lemma 1, we have

PΓ = ΓP, R = PR = RP,

ΨS(z) = PΨS(z) = ΨS(z)P = ΨS1(z)P, z ∈ ΠK ,

q(z) = PqS(z) = qS(z)P = qS1(z)P, z ∈ ΠK .

From these equalities, we immediately obtain the following two corollaries.

Corollary 1. Theorem 1 and Propositions 1–4 hold true for an arbitrary K ∈ B+(H) \ {0}.

Corollary 2. If S, S̃ ∈ S (K) and S(0)P = S̃(0)P , then ΨS = ΨS̃, qS = qS̃.

We define the following subsets of the set Q of all reflectionless potentials:

Qreg(K) := {qS | S ∈ Sreg(K)}, Qπ(K) := {qS | S ∈ S (K)},

Qreg :=
⋃
K

Qreg(K), Qπ :=
⋃
K

Qπ(K).
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It follows from these definitions that

Qreg ⊂ Qπ ⊂ Q.

To understand the structure of the operators Tq with an arbitrary q ∈ Q, it is first
useful to study the properties of the operator Tq with a potential q ∈ Qπ. Although for
potentials q ∈ Qπ there exists a rather simple formula (see (5)), studying the properties of
the corresponding operators Tq presents several challenges. On the other hand, the operators
Tq with potentials q ∈ Qreg turn out to be much more convenient for analysis. Therefore,
we have decided to focus on these operators first. We begin by studying the Jost solutions
of the equation (1) with q ∈ Qreg, as we consider them to be the key to understanding the
corresponding operators Tq.

Note that in the scalar case, the theory of Schrodinger operators with reflectionless
potentials is quite well developed (see, for example, [4], [5], [6], [7], [8]), whereas the theory of
Schrodinger operators with reflectionless operator-valued potentials is still in its early stages
of development. However, the authors hope that within the suggested framework, it will be
possible to obtain new results even in the scalar case.

Formulation of the main results. Let q ∈ Cb,s. A solution y of the equation (1) is called
the right (left) Jost solution if

s-lim
x→+∞

e−iλxy(x) = I ( s-lim
x→−∞

eiλxy(x) = I).

For any λ ∈ C+ \ iR, the Weyl-Titchmarsh solutions of the equation (1) always exist (see
[2]). On the other hand, the existence of the Jost solutions can only be guaranteed under
additional conditions on the potential q. A classical sufficient condition ensuring the existence
of Jost solutions for all λ ∈ C+ is the Marchenko condition [3]∫

R
(1 + |x|)∥q(x)∥ dx < ∞.

Let S ∈ Sreg(K) and set

e(λ, x) := eiλx[I −Ψ(x)e−xKKλR
∗], x ∈ R, λ ∈ O+(K), (13)

e−(λ, x) := e−iλx[I −Ψ(x)exKKλΓ
−1R∗], x ∈ R, λ ∈ O+(K),

θ(λ) := I −RΓ−1KλR
∗, λ ∈ O+(K).

The main result of this paper is the following two theorems.

Theorem 2. Let S ∈ Sreg(K) and q = qS. Then for an arbitrary λ ∈ O+(K) the function
e(λ, ·) (respectively, e−(λ, ·)) is the right (left) Jost solution of the equation (1). Moreover,

(1) for each λ ∈ O(K) the following relation holds:

e(λ, x) = e−(−λ, x) θ(λ), x ∈ R; (14)

(2) for each λ ∈ O(K) the functions e(λ, ·) and e−(λ, ·) form a fundamental system of
solutions to the equation (1), which also means that every B(H)-valued solution has
the form

y(x) = e(λ, x)a+ e−(λ, x)b, x ∈ R,
where the operators a, b ∈ B(H) are uniquely determined by the solution y;
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(3) for all λ ∈ C+ \ {0} the following estimates hold:

∥e−iλxe(λ, x)∥ ≤ 1, ∥eiλxe−(λ, x)∥ ≤ 1, ∥θ(λ)∥ ≤ 1 (x ∈ R).

Let us agree to call the functions

e(λ) := e(λ, 0), e−(λ) := e−(λ, 0) (λ ∈ O+(K))

the right and left Jost functions of the operator Tq, respectively. These functions carry
important information and therefore deserve special attention.

Theorem 3. Let S ∈ Sreg(K), q = qS. Then (see (10))

(1) for all λ ∈ O(K) the operators e(λ), e−(λ) and θ(λ) belong to Binv(H), and the following
equality hold:

e(λ)e∗(λ̄) = M(λ) = e−(λ)e
∗
−(λ̄), e−1

− (λ)e(λ) = θ(λ);

(2) for all λ ∈ C+ \ iR

e(λ, x) = f+(λ
2, x)e(λ), e−(λ, x)f−(λ

2, x)e−(λ), x ∈ R. (15)

2. Proof of Theorems 2 and 3. The proof of the main theorems is divided into parts,
each of which is formulated as a separate lemma.

Lemma 2. Let S ∈ Sreg(K) and q = qS. Then for each λ ∈ O+(K) the function e(λ, ·) is
a solution of the equation (1) and

s-lim
x→+∞

e−iλxe(λ, x) = I, s-lim
x→+∞

e−iλxe′(λ, x) = iλI,

s-lim
x→−∞

e−iλxe(λ, x) = θ(λ), s-lim
x→−∞

e−iλxe′(λ, x) = iλθ(λ).
(16)

Moreover, for an arbitrary λ ∈ O−(K)

s-lim
x→+∞

eiλxe∗(λ̄, x) = I, s-lim
x→+∞

eiλx(e∗)′(λ̄, x) = −iλI,

s-lim
x→−∞

eiλxe(λ̄, x) = θ∗(λ̄), s-lim
x→−∞

eiλxe′(λ̄, x) = −iλθ∗(λ̄).
(17)

Proof. Let the conditions of Lemma be satisfied and

Φ(x) := Re−xK , x ∈ R. (18)

Then the formula (13) can be rewritten as

e(λ, x) = eiλx[I −Ψ(x)KλΦ
∗(x)], x ∈ R. (19)

Thus,

e−iλx[−e′′(λ, x) + q(x)e(λ, x)− λ2e(λ, x)] = [2iλ(ΨKλΦ
∗)′ + (ΨKλΦ

∗)′′ − qΨKλΦ
∗ + q](x).
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Using the equality (7), we obtain

2iλ(ΨKλΦ
∗)′ + (ΨKλΦ

∗)′′ − qΨKλΦ
∗ + q =

= 2iλΨ′KλΦ
∗ − 2iλΨKKλΦ

∗ + (Ψ′′ − qΨ+ΨK2)KλΦ
∗ − 2Ψ′KKλΦ

∗ + q =

= −2Ψ′(K − iλI)KλΦ
∗ − 2iλΨKKλΦ

∗ + 2ΨK2KλΦ
∗ + q =

= −2Ψ′Φ∗ + 2ΨK(K − iλI)KλΦ
∗ + q = −2(ΨΦ∗)′ + q.

Therefore, it suffices to show that
2(ΨΦ∗)′ = q.

It follows from (8) that
Ψ(x)Φ∗(x) = Φ(x)S(x)Φ∗(x),

and hence, taking into account (3), we obtain

2(ΨΦ∗)′ = 2(ΦSΦ∗)′ = 2Φ(−KS − SK + S ′)Φ∗ = −4ΦSKSΦ∗ = −4ΨKΨ∗ = q.

Thus, for λ ∈ O+(K) the function e(λ, ·) is a solution of the equation (1).
In view of (4), (8) and (18), the formula (13) can be rewritten as

e(λ, x) = eiλx[I −R(Γ + e2xK)−1KλR
∗], x ∈ R, λ ∈ O+(K). (20)

Since
R = RP, PΓ = ΓP, PK = KP,

then
e(λ, x) = eiλx[I −RP (Γ + Pe2xKP )−1PKλR

∗], x ∈ R.

Taking into account that s-lim
x→+∞

e−xKP = 0, we get the equalities

s-lim
x→+∞

P (Γ + Pe2xKP )−1P = s-lim
x→+∞

e−xKP (e−xKΓe−xK + I)−1e−xKP = 0,

s-lim
x→−∞

(Γ + Pe2xKP )−1 = Γ−1.

Therefore, by applying (20), the relations (16) and (17) can be easily derived.

Lemma 3. Let S ∈ Sreg(K) and q = qS. Then for each λ ∈ O+(K) the function e−(λ, ·) is
a solution of the equation (1) and

s-lim
x→−∞

eiλxe−(λ, x) = I, s-lim
x→−∞

eiλxe′−(λ, x) = iλI,

s-lim
x→+∞

eiλxe−(λ, x) = θ∗(−λ̄), s-lim
x→+∞

eiλxe′−(λ, x) = iλθ∗(−λ̄).
(21)

Proof. Consider the function S◦(x) := I − S(−x). It is easy to check that the function S◦ is
a solution of the Riccati equation (3) and S◦ ∈ Sreg(K). Let us define

Ψ◦ := ΨS◦ , q◦ := qS◦ , R◦ := RS◦ , Γ◦ := ΓS◦ .

Simple calculations show that

R◦ = RΓ−1, Γ◦ = Γ−1, Ψ◦(x) = Ψ(−x), q◦(x) = q(−x). (22)
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In view of Lemma 2, the function

e◦(λ, x) = eiλx[I −Ψ◦(x)e−xKKλ(R
◦)∗], x ∈ R, λ ∈ O+(K), (23)

is a solution of the equation −y′′(x) + q(−x)y(x) = λ2y(x). Moreover,

s-lim
x→+∞

e−iλxe◦(λ, x) = I, s-lim
x→+∞

e−iλx(e◦)′(λ, x) = iλI,

s-lim
x→−∞

e−iλxe◦(λ, x) = θ◦(λ), s-lim
x→−∞

e−iλx(e◦)′(λ, x) = iλθ◦(λ),
(24)

where
θ◦(λ) = I −R◦(Γ◦)−1Kλ(R

◦)∗, λ ∈ O+(K).

This implies that the function x 7→ e◦(λ,−x) is a solution of the equation −y′′ + qy = λ2y.
Taking into account that (22) and (23), we obtain that

e◦(λ,−x) = e−iλx[I −Ψ(x)exKKλΓ
−1R∗] = e−(λ, x), x ∈ R, λ ∈ O+(K),

and
θ◦(λ) = I −RKλΓ

−1R∗ = θ∗(−λ̄).

Therefore, using the asymptotics (24), we get the statement of Lemma.

Lemma 4. Let S ∈ Sreg(K). Then for each λ ∈ O(K) the functions e(λ, ·) and e(−λ, ·)
form a fundamental system of solutions to the equation (1), i.e., every B(H)-valued solution
of the equation (1) has the form

y(x) = e(λ, x)a+ e(−λ, x)b, x ∈ R,

where the operators a, b ∈ B(H) are uniquely determined by the solution y.

Proof. For an abitrary λ ∈ O(K), denote by E(λ, ·) and E∗(λ, ·) the functions acting from
R to B(H ×H) by the formulas

E(λ, x) :=

(
e(λ, x) e(−λ, x)
e′(λ, x) e′(−λ, x)

)
, E∗(λ, x) :=

(
(e∗)′(λ̄, x) −e∗(λ̄, x)

−(e∗)′(−λ̄, x) e∗(−λ̄, x)

)
.

Let us show that for all x ∈ R and λ ∈ O(K) the equalities

E∗(λ, x)E(λ, x) = −2iλI, E(λ, x)E∗(λ, x) = −2iλI, x ∈ R, (25)

hold, where I is the identity operator in the algebra B(H×H), i.e., I :=
(
I 0
0 I

)
. For a fixed

x ∈ R, the left-hand and right-hand sides of the equalities (25) are analytic functions in
O(K). Therefore, it is sufficient to prove that the equalities (25) hold for each x ∈ R and for
large λ ∈ R.

Fix λ ∈ R \ {0}, and consider the Wronskians

W1(x) := (e∗)′(λ, x)e(λ, x)− e∗(λ, x)e′(λ, x),

W2(x) := (e∗)′(−λ, x)e(λ, x)− e∗(−λ, x)e′(λ, x).
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It is easy to check that W ′
j(x) ≡ 0. Taking into account that (16) and (17), we obtain

W1(x) ≡ s-lim
x→+∞

[(e∗)′(λ, x)e(λ, x)− e∗(λ, x)e′(λ, x)] = −2iλI,

W2(x) ≡ s-lim
x→+∞

[(e∗)′(−λ, x)e(λ, x)− e∗(−λ, )e′(λ, x)] = 0.

It follows that
E∗(λ, x)E(λ, x) = −2iλI, x ∈ R, λ ∈ R \ {0}.

By the definition of the functions e(λ, ·), it is easy to conclude that for a fixed x ∈ R∥∥∥∥E(λ, x)−
(

eiλxI e−iλxI
iλeiλxI −iλe−iλxI

)∥∥∥∥ = o(1), R ∋ λ → ∞.

Therefore, for each x ∈ R, there exists rx > 0 such that the operators E(λ, x) are invertible
in the algebra B(H ×H) for λ > rx. From the above, it follows that

E(λ, x)E∗(λ, x) = E∗(λ, x)E(λ, x) = −2iλI, λ > rx.

Thus, the equalities (25) are established.
Let y be an arbitrary B(H)-valued solution of (1). Consider the solution

u(x) = e(λ, x)a+ e(−λ, x)b− y(x), x ∈ R,

where (
a
b

)
= E−1(λ, 0)

(
y(0)
y′(0)

)
.

It is easy to see that u(0) = u′(0) = 0, i.e., u is a solution of the Cauchy problem for the
equation (1) with zero initial conditions. By the uniqueness theorem, u ≡ 0 and

y(x) = e(λ, x)a+ e(−λ, x)b, x ∈ R.

Obviously, in this case, the operators a and b are uniquely determined.

Lemma 5. Let S ∈ Sreg(K), R = RS,Γ = ΓS. For all λ ∈ O(K) and x ∈ R, the following
equalities hold:

(Γ + e2xK)−1KλR
∗RK−λ(Γ + e2xK)−1 = K−λ(Γ + e2xK)−1 + (Γ + e2xK)−1Kλ−

−2(Γ + e2xK)−1exKK(K2 + λ2I)−1exK(Γ + e2xK)−1, (26)
Γ−1KλR

∗RK−λΓ
−1 = Γ−1Kλ +K−λΓ

−1, K−λΓ
−1R∗RΓ−1Kλ = K−λΓ

−1 + Γ−1Kλ. (27)

Proof. In view of (9), for an arbitrary x ∈ R, λ ∈ O(K)

(K − iλI)(Γ + e2xK) + (Γ + e2xK)(K + iλI) = R∗R + 2Ke2xK . (28)

Multiplying the equality (28) on the left by the operator (Γ + e2xK)−1Kλ and on the right
by K−λ(Γ + e2xK)−1, we get

K−λ(Γ + e2xK)−1 + (Γ + e2xK)−1Kλ = (Γ + e2xK)−1KλR
∗RK−λ(Γ + e2xK)−1+

+ 2(Γ + e2xK)−1exKK(K + λ2I)−1exK(Γ + e2xK)−1.
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Therefore, the equality (26) is proved. It also follows from (9) that

(K − iλI)Γ + Γ(K + iλI) = R∗R. (29)

Multiplying the equality (29) on the left by the operator Γ−1Kλ and on the right by K−λΓ
−1,

we get the first equality in (27). Multiplying the equality (29) on the left by the operator
K−λΓ

−1 and on the right by Γ−1Kλ, we obtain the second equality in (27).

Lemma 6. Let S ∈ Sreg(K), q = qS. For all λ ∈ O(K) and x ∈ R, the following equalities
hold:

e(λ, x)e∗(λ̄, x) = I − 2Ψ(x)K(K2 + λ2I)−1Ψ∗(x), (30)
e(λ, x) = e−(−λ, x)θ(λ), (31)

θ(λ)θ∗(λ̄) = θ∗(λ̄)θ(λ) = I. (32)

Proof. Let the conditions of Lemma be satisfied. Multiplying the equality (26) on the left
by R and on the right by R∗, we get

e(λ, x)e∗(λ̄, x) = I − 2R(Γ + e2xK)−1exKK(K + λ2I)−1exK(Γ + e2xK)−1R∗.

Taking into account that (see (4) and (8))

R(Γ + e2xK)−1exK = Re−xKS(x) = Ψ(x),

we obtain (30).
Let us prove (31). From the definitions, it follows that

e−(−λ, x)θ(λ) = eiλx[I −Ψ(x)exKK−λΓ
−1R∗][I −RΓ−1KλR

∗].

Using (27), we get

Ψ(x)exKK−λΓ
−1R∗RΓ−1KλR

∗ = Ψ(x)exKK−λΓ
−1R∗ +Ψ(x)exKΓ−1KλR

∗.

Thus,
e−(−λ, x)θ(λ) = eiλx[I +Ψ(x)exKΓ−1KλR

∗ −RΓ−1KλR
∗].

Since (see (4) and (8))

Ψ(x)exK −R = Re−xKS(x)exK −R = R(Γ + e2xK)−1e2xK −R =

= −R(Γ + e2xK)−1Γ = −Ψ(x)e−xKΓ,

then
e−(−λ, x)θ(λ) = eiλx[I −Ψ(x)e−xKKλR

∗] = e(λ, x).

It remains to prove (32). Multiplying the first equality in (27) on the left by R and on the
right by R∗, we obtain an equality equivalent to θ(λ)θ∗(λ̄) = I. Similarly, multiplying the
second equality in (27) on the left by R and on the right by R∗, we get an equality equivalent
to θ∗(λ̄)θ(λ) = I.

Lemma 7. Let S ∈ Sreg(K). Then

∥e−iλxe(λ, x)∥ ≤ 1, ∥eiλxe−(λ, x)∥ ≤ 1, x ∈ R, λ ∈ C+ \ {0}, (33)

∥θ(λ)∥ ≤ 1, λ ∈ C+ \ {0}. (34)
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Proof. First, we will prove Lemma in the case K ∈ Binv(H) and for the functions e(λ, ·)
and θ. For a fixed x ∈ R, the function

g(λ) := e−iλxe(λ, x)

is analytic in the domain O+(K), which contains C+. It follows from (30) that

g(ξ)g∗(ξ) ≤ I, ξ ∈ R,

and hence,
∥g(ξ)∥ ≤ 1, ξ ∈ R. (35)

Moreover (see (19)),

∥g(λ)∥ = ∥I −Ψ(x)KλΦ
∗(x)∥ = 1 + o(1), λ → ∞.

Denote by γr (r > 1) a simple closed curve in C consisting of the interval [−r, r] and the
semicircle {z ∈ C+ | |z| = r}. Let h1, h2 ∈ H. Then the scalar function

φ(λ) := (g(λ)h1 | h2), λ ∈ C+,

is analytic in C+ and continuous in the closure of the domain Ωr bounded by the curve γr.
From the above, it follows that

max
λ∈γr

|φ(λ)| ≤ ∥h1∥∥h2∥(1 + o(1)), r → ∞.

Therefore, according to the maximum principle, we have

|φ(λ)| ≤ ∥h1∥∥h2∥, λ ∈ C+,

thus,
|(g(λ)h1 | h2)| ≤ ∥h1∥∥h2∥, h1, h2 ∈ H.

This implies that
∥e−iλxe(λ, x)∥ = ∥g(λ)∥ ≤ 1, λ ∈ C+.

From (32), we have
∥θ(ξ)∥ = 1, ξ ∈ R.

Moreover, the function θ is analytic in O+(K) ⊃ C+ and

∥θ(λ)∥ = ∥I −RΓ−1KλR
∗∥ = 1 + o(1), λ → ∞.

Repeating the same reasoning as in the case of the function g, we obtain the estimate

∥θ(λ)∥ ≤ 1, λ ∈ C+.

Let us consider the general case. For this, we will apply the previously established results
for K ∈ Binv(H) and pass to the limit to cover a general non-zero K ∈ B+(H). For an
arbitrary η ∈ (0, 1), put by definition

K{η} := K + ηI, S{η}(x) := ex(K+ηI)[S−1(0)− I + e2x(K+ηI)]−1ex(K+ηI).
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It is easy to check that S{η} ∈ Sreg(K{η}) and

S{η}(0) = S(0), S ′
{η}(0) = S ′(0) + 2ηS(0)(I − S(0)). (36)

Let Γ{η} := ΓS{η} and R{η} := RS{η} . It follows from (36) that

Γ{η} = Γ, lim
η→0

∥S ′(0)− S ′
{η}(0)∥ = 0, lim

η→0
∥R−R{η}∥ = 0. (37)

Denote by e{η}(λ, ·) and θ{η} the functions e(λ, ·) and θ corresponding to the function S{η}.
Since K{η} ∈ Binv(H), it follows from the previously proven results that

∥e−iλxe{η}(λ, x)∥ ≤ 1, ∥θ{η}(λ)∥ ≤ 1, x ∈ R, λ ∈ C+, η ∈ (0, 1). (38)

From (20), we obtain that for all x ∈ R and λ ∈ O+(K)

e{η}(λ, x) = eiλx[I −R{η}(Γ + e2x(K+ηI))−1(K + ηI − iλI)−1R∗
{η}].

Moreover, by definition, we have

θ{η}(λ) = I −R{η}Γ
−1(K + ηI − iλI)−1R∗

{η}, λ ∈ O+(K).

From this, taking into account (37), we obtain that in the uniform operator topology

lim
η→0

e{η}(λ, x) = e(λ, x), lim
η→0

θ{η}(λ) = θ(λ), x ∈ R, λ ∈ C+ \ {0}.

Passing to the limit in (38) as η → 0, we get

∥e−iλxe(λ, x)∥ ≤ 1, ∥θ(λ)∥ ≤ 1, x ∈ R, λ ∈ C+ \ {0}.

From the proven result, it follows that (see the proof of Lemma 3)

∥e−iλxe◦(λ, x)∥ ≤ 1, λ ∈ C+.

Since e−(λ, x) = e◦(λ,−x), we conclude that

∥eiλxe−(λ, x)∥ ≤ 1, λ ∈ C+ \ {0}.

Lemma 8. Let S ∈ Sreg(K), q = qS. Then

(1) for all λ ∈ O(K) the operators θ(λ) belong to Binv(H), and for λ ∈ R\{0} the operators
θ(λ) are unitary;

(2) for all λ ∈ OM(K) the operators e(λ) and e−(λ) belong to Binv(H), and the following
equalities hold:

e(λ)e∗(λ̄) = M(λ) = e−(λ)e
∗
−(λ̄), e(λ) = e−(λ)θ(λ). (39)
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Proof. Let λ ∈ O(K). It follows from (32) that θ(λ) ∈ Binv(H) and θ−1(λ) = θ∗(λ̄).
Therefore, if λ ∈ R \ {0}, then θ(λ) is unitary.

The equalities (30) imply that for all λ ∈ OM(K)

e(λ)e∗(λ̄) = I − 2Ψ(0)K(K2 + λ2I)−1Ψ∗(0) = M(λ),

and, in view of (31),
e(λ) = e−(−λ)θ(λ), λ ∈ O(K). (40)

Therefore, taking into account (32), we get

M(λ) = e(λ)e∗(λ̄) = e−(−λ)θ(λ)θ∗(λ̄)e∗−(−λ̄) = e−(−λ)e∗−(−λ̄).

Since −λ ∈ OM(K) and M(−λ) = M(λ), we have e−(λ)e
∗
−(λ̄) = M(λ).

It remains to verify that for all λ ∈ OM(K) the operators e(λ) and e−(λ) belong to
Binv(H). Since θ(λ) ∈ Binv(H), in view of the equality (40), it suffices to establish that
e(λ) ∈ Binv(H) for all λ ∈ OM(K). Let us fix λ ∈ OM(K). By the definition of the set OM(K),
the operator M(λ) belongs to Binv(H). Therefore, it follows from (39) that ran e(λ) = H.
And hence, by the bounded inverse theorem, e(λ) ∈ Binv(H) if ker e(λ) = {0}. Assume there
exists a nonzero h ∈ H such that e(λ)h = 0. In the proof of Lemma 4, we established

E∗(λ, x)E(λ, x) = −2iλI, x ∈ R.

This implies that for all x ∈ R

W1(x) = (e∗)′(λ, x)e(λ, x)− e∗(λ, x)e′(λ, x) = −2iλI.

And hence,
W1(0)h = −e∗(λ)e′(λ, 0)h = −2iλh. (41)

Then, taking into account (39), we obtain

0 = −2iλe(λ)h = −e(λ)e∗(λ)e′(λ, 0) = −M(λ)e′(λ, 0)h.

Since M(λ) ∈ Binv(H), it follows that e′(λ, 0)h = 0. Hence, by (41), we conclude that h = 0,
which leads to a contradiction. Therefore, ker e(λ) = {0} and e(λ) ∈ Binv(H).

Remark 2. The function O(K) ∋ λ 7→ θ(λ) ∈ B(H) is an analogue of the Blaschke product
in the upper half-plane C+. Moreover, all its singularities and the singularities of the function
λ 7→ θ−1(λ) are concentrated in the set C \ O(K), which is compact on the imaginary axis.
These singularities are not necessarily poles.

With all the above results at hand, the proofs of Theorems 2 and 3 can be completed as
follows.

Proof of Theorem 2. According to Lemmas 2 and 3, for all λ ∈ O+(K) the function e(λ, ·)
is the right Jost solution and the function e−(λ, ·) is the left Jost solution of the equation
(1). The equality (14) was proven in Lemma 6. It follows from Lemma 4 and the equalities
(14), (32) that for each λ ∈ O(K) the functions e(λ, ·) and e−(λ, ·) form a fundamental
system of solutions to the equation (1). Finally, the estimates in Part (3) were established
in Lemma 7.
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Proof of Theorem 3. Part (1) of Theorem 3 was proven in Lemma 8. It remains to prove the
equalities (15). Fix λ ∈ C+ \ iR, and put

y+(x) := e(λ, x)e−1(λ), y−(x) := e−(λ, x)e
−1
− (λ), x ∈ R.

Then y+(0) = y−(0) = I, and using (16) and (21), for each h ∈ H, we have∫
R±

∥y±(x)h∥2 dx < ∞.

By the uniqueness of the Weyl-Titchmarsh solutions, we conclude that y± = f±(λ, ·).
Therefore,

e(λ, x) = f+(λ
2, x)e(λ), e−(λ, x)f−(λ

2, x)e−(λ), x ∈ R.
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4. V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is
integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.

5. F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions, Duke Math. J., 68 (1992), №1, 101–150.
6. I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrödinger

operators, Trans. AMS, 368 (2016), №2, 1251–1270.
7. S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4,

490–528.
8. R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrödinger operators with

integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22
(2021), 487–527.

Ivan Franko National University of Lviv
Lviv, Ukraine
yamykytyuk@yahoo.com
n.sushchyk@gmail.com

Received 18.09.2024
Revised 28.02.2025


