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Let f be an entire transcendental function, (λn) be a non-decreasing to +∞ sequence,
Mf (r) = max{|f(z)| : |z| = r}, and Γf (r)/r = (lnMf (r))

′
+ be a right derivative, r > 0. For

a regularly convergent in C series of the form F (z) =
∑∞

n=1 anf(λnz) the following statement
is proved (Corollary 1): If condition

∞∑
n=1

1

nΓf (λn)
< +∞

holds, then the relation lnMF (r) = (1 + o(1)) lnµF (r) holds as r → +∞ outside a set of finite
logarithmic measure, where µF (r)=max{|an|Mf (rλn) : n ≥ 0}, MF (r)=max{|F (z)| : |z| = r}.

Let λ = (λn) be non-decreasing to +∞ sequence. There was obtained the conditions
in [1, 2] under which for series of the form

F (x) =
∞∑
n=1

anf(λnx), an ≥ 0 (n ≥ 0), (1)

and for such integrals
∫ +∞
0

a(t)f(tx)ν(dt) as some generalizations of these series, the Borel-
type asymptotic relation

lnF (x) = (1 + o(1)) lnµF (x) (2)
holds as x→ +∞ outside some set of finite Lebesgue measure. Here f is a positive function
on R+ = (0,+∞) such that the function y = ln f(x) : R+ → R+ is a convex function
on R+, µ(x, F ) = max{anf(xλn) : n ≥ 0}. In [3], the Borel-type relation was researched
for more general positive integrals of the form

∫ +∞
0

a(t)f(tx + β(t)τ(x))ν(dt), which are
generalizations of series of the Taylor-Dirichlet type. In particular, the following theorem
was proved in paper [1].

Theorem 1 ( [1]). Let f : R+ → R+ be a differentiable function such that the function
ln f(x) : R+ → R+ is a convex function and a non-negative sequence (λn) be such that
0 ≤ λn ↑ +∞ (0 ≤ n ↑ +∞). If a function F represented on (0,+∞) by a series of form (1)
and the condition

+∞∑
n=1

1

n ln f(λn)
< +∞ (3)

holds, then there exists a set E ⊂ (0,+∞) of finite Lebesgue measure such that asymptotic
relation (2) holds as x→ +∞ (x→ +∞, x /∈ E).

2020 Mathematics Subject Classification: 30B50, 30D20.
Keywords: entire function; regularly convergent series; maximal term.
doi:10.30970/ms.63.1.98-101

© A. Yu. Bodnarchuk, O. B. Skaskiv, O. M. Trusevych, 2025



BOREL RELATION FOR POSITIVE FUNCTIONAL SERIES 99

Sheremeta [5] considered regularly convergent series of the form

G(z) =
+∞∑
n=0

bng(zβn),

that is

MG(r) :=
+∞∑
n=0

|bn|Mg(rβn) < +∞

for all r > 0. Here g(z) is some entire function, (βn) is a given non-negative sequence such that
βn ↑ +∞ (n ↑ +∞), and Mg(r) = max{|g(z)| : |z| = r}. If we now denote F (x) = MG(x),
f(x) = Mg(x), λn = βn, then we obtain a series of form (1), where the function ln f(x) is
logarithmicaly convex, i.e. the function h(x) := ln f(ex) is a convex function on R.

For the function f(x) = ex we obtain an entire Dirichlet series F (x) =
∑∞

n=1 ane
xλn .

Then in view of
+∞∑
n=1

1

n ln f(λn)
=

+∞∑
n=1

1

nλn
< +∞,

from Theorem 1 it follows the statement of theorem from [4], which was obtained for enti-
re Dirichlet series. Note that if the function ln f(x) is not convex, then we cannot apply
the statement of Theorem 1. The following conjecture from [5] is closely related to this
circumstance. Let us denote Γf (x) = x(ln f(x))′.

Conjecture 1. If
∞∑
n=1

1

nΓf (λn)
< +∞, (4)

then asymptotical relation (2) holds as x → +∞ outside some exceptional set E such that∫
E
Γf (x)

dx
x
< +∞ for every functions F of form (1).

For an every transcendental function f we get Γf (r) = r(lnMf (r))
′
+ ↗ +∞ (r → +∞).

Therefore, from condition
∫
E
Γf (x)

dx
x
< +∞ follows that

∫
E

dx
x
< +∞, that is, a set E has

finite Lebesgue measure.
Note that if we choose ln f(t) = (ln t)1+ϱ, ϱ > 0, then Γf (r) = (1 + ϱ)(ln t)ϱ. Therefore,

the condition (3) is weaker than the condition (4). However, there is a caveat here. Under
the conditions of Sheremeta’s conjecture the function ln f(x) should be considered logari-
thmically convex. And in the statement of Theorem 1, the function ln f(x) is convex.

Let us prove the following statement.

Theorem 2. Let f0 : R+ → R+ be a differentiable function such that the function y =
ln f0(x) : R+ → R+ is a convex function and the right derivative L(x, f0) := (ln f0(x))

′
+

strictly instreases to +∞ (x ≥ x0); (βn) be a non-negative sequence such that 0 ≤ βn ↑ +∞
(0 ≤ n ↑ +∞). If a function F0 represented on (0,+∞) by a series of form

F0(x) =
∞∑
n=0

anf0(βn + x), an ≥ 0 (n ≥ 0), (5)

and the condition
+∞∑
n=1

1

nL(βn, f0)
< +∞ (6)
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holds, then there exists a set E ⊂ (0,+∞) of finite Lebesgue measure such that asymptotic
relation lnF0(x) = (1 + o(1)) lnµF0(x) holds as x→ +∞ (x→ +∞, x /∈ E), where

µF0(x) = max{anf0(βn + x) : n ≥ 0}.

Proof. Without loss of generality we can assume that f0(0) = 1. We reason similarly as in
papers [1–3,6]. It is easy to see that

F0(x) =

∫ +∞

0

a(t)f0(t+ x)dnβ(t),

where nβ(t) =
∑

βn≤t 1, a(t) is some non-negative dnβ-measurable function such that a(βn) =
an (n ≥ 0) and a(t) = 0 for all t /∈ {βn : n ≥ 0}.

For fixed x > 0 we put

G := Gx =
{
t > 0: (ln f0(u))

′
∣∣∣
u=x+t

≤ 2g′0(x)
}
,

where g0(x) := lnF0(x). So,∫
R+\G

a(t)f0(t+ x)dnβ(t) =

∫
R+\G

a(t)f ′
0(t+ x)

(
(ln f0(u))

′
∣∣∣
u=t+x

)−1

dnβ(t) ≤

≤ 1

2g′0(x)

∫
R+\G

a(t)f ′
0(t+ x)dnβ(t) ≤

1

2g′0(x)

∫
R+

a(t)f ′
0(t+ x)dnβ(t) =

F0(x)

2
.

Hence,

F0(x) =

∫
G

a(t)f0(t+ x)dnβ(t) +

∫
R+\G

a(t)f0(t+ x)dnβ(t) ≤
∫
G

a(t)f(t+ x)dnβ(t) +
F0(x)

2
,

i.e.
F0(x) ≤ 2

∫
G

a(t)f0(t+ x)dnβ(t) ≤ 2µ0(x, F )ν0(2g
′
0(x)), (7)

where ν0(t) :=
∑

L(βn,f0)≤t 1.

Now we need the following statement ([6]): for a given non-decreasing function ν0(t) :
R+ → R+ the condition

(∃t0 > 0) :

∫ +∞

t0

d ln ν0(t)

t
< +∞, (8)

is equivalent to the condition that there exists a continuous function ψ : R+ → R+ such that
ψ(t) ↑ +∞ (t0 ≤ t→ +∞) and∫ +∞

0

dt

ψ(t)
< +∞, ln ν0(t) = o(ψ−1(t)) (t→ +∞). (9)

It is easy to see that condition (8) follows from condition (6).
For the function ψ0(t) = ψ(t)/2 we denote a set

E := {x > x0 : g
′
0(x) ≥ ψ0(g0(x))}.
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Since

meas(E ∩ [x0,+∞)) =

∫
E

dx ≤
∫
E

g′0(x)

ψ0(g0(x))
dx ≤

∫ +∞

0

dt

ψ0(t)
< +∞, (10)

the set E has finite Lebesgue measure. Therefore, from inequality (7) and relation (9) we
obtain

lnF0(x) ≤ ln 2 + lnµ(x, F0) + ln ν0(2g
′
0(x)) ≤

≤ ln 2 + lnµ(x, F0) + ln ν0(ψ(g0(x))) = lnµ(x, F0) + o(g0(x))

as x→ +∞ (x /∈ E).

From Theorem 2 we immediately obtain the following corollary.

Corollary 1. Let (λn) be non-decreasing to +∞ a sequence and a function F represented
by regularly convergent functional series of form (1), where f is an entire function. If condi-
tion (4) satisfies, then the relation lnMF (r) = (1 + o(1)) lnµF (r) holds as r → +∞ outside
a set of finite logarithmic measure, where µF (r) = max{|an|Mf (rλn) : n ≥ 0}.
Proof. Let us denote f0(x) = Mf (e

x), F0(x) = MF (e
x), βn = lnλn, and consider the series

of form (5). Then

µF (e
x) ≤MF (e

x) ≤ F0(x), L(x, f0) = (ln f0(x))
′
+ =

d lnMf (r)

d ln r

∣∣∣∣
r=ex

= Γf (e
x).

It remains to apply the statement of Theorem 2.
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