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Given natural parameters s and r, where 2 ≤ s ≤ r, we consider the distribution of a random
variable

ξ =

∞∑
k=1

s−kξk ≡ ∆rs
ξ1ξ2...ξk...

,

where (ξk) is a sequence of independent random variables taking values in {0, 1, ..., r} with
probabilities p0, p1, ..., pr, respectively, and all pi < 1.

In the case s = 3 = r, necessary and sufficient conditions for the singularity and absolute
continuity of the distribution of ξ are established. It is shown that the distribution of ξ is
absolutely continuous if and only if p1 = 1

3 = p2. In all other cases, the distribution is si-
ngular (i.e., supported on a set of zero Lebesgue measure). For p0p1p2p3 = 0, the fractal
Hausdorff–Besicovitch dimension of the spectrum (i.e., the minimal closed support) of the di-
stribution of ξ and of the essential support of its density is explicitly determined under the
condition pipi+1pi+2 ̸= 0 for i = 0, 1.

The work also discusses the connection between the distribution of ξ and infinite Bernoulli
convolutions governed by the corresponding series as well as representations of numbers in the
base-3 numeral system with one redundant digit. Several open problems are formulated.

For the numeral system with the base 3 and the alphabet A = {0, 1, 2, 3}, the problem
of determining the number of representations of a number is completely solved. It is proven
that almost all numbers (with respect to the Lebesgue measure) in the interval [0; 3

2 ] have
a continuum of distinct representations, while those with a unique representation form a fractal
set of Hausdorff–Besicovitch dimension log3 2.

1. Introduction. Let (Ω,B) be a measurable space and let µ and ν be two continuous
probability measures defined on it. Recall that the measure µ is called absolutely continuous
with respect to the measure ν (µ ≤ ν) if µ(E) = 0 for all E ∈ B such that ν(E) = 0. If
µ ≤ ν and ν ≤ µ, the measures are called equivalent (µ ∼ ν). The measures µ and ν are said
to be orthogonal (µ ⊥ ν), if there exists a set S ∈ B such that µ(S) = 0 and ν(Ω \ S) = 0.

If µ ⊥ ν and one of the measures is the Lebesgue measure, then other is called singular,
i.e., orthogonal to the Lebesgue measure. The probability distribution function of a singularly
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continuous random variable has a derivative equal to zero almost everywhere with respect
to the Lebesgue measure.

Singular probability measures and singular functions remain insufficiently studied objects,
and their general theory is underdeveloped. Nevertheless, Zamfirescu’s theorem ([19]) states
that, in the class of continuous probability distribution functions, those that have a nontrivial
singular component form a set of the second Baire category.

There are several problems related to singular measures (random variables).
1. The problem of deepening of the Jessen–Wintner theorem ([7]), which asserts that the

sum of a convergent (with probability 1) random series of independent discretely distributed
random variables has a pure distribution (purely discrete, purely absolutely continuous, or
purely singular). The criterion for discreteness is known, but the criteria for singularity and
absolute continuity are still unknown. In certain classes of random variables, this problem
has been successfully solved ([1, 2, 15–18]).

2. The problem of convolution of two singular measures (distributions). Currently, the
necessary and sufficient (as well as reasonably general sufficient) conditions under which the
convolution of two singular measures (distributions) is singular (or absolutely continuous)
are unknown ([6, 13]).

3. The problem of convolution of two Cantor distributions (distributions supported on
nowhere dense sets of zero Lebesgue measure). Moreover, necessary and sufficient conditions
for the spectrum (the minimal closed support) of the convolution of two Cantor distributions
to be a Cantor set or Cantorval remain unknown.

4. The problem of the behavior of the absolute value of the characteristic function at
infinity.

Recall that the characteristic function of the distribution of a random variable ζ wi-
th probability distribution function Fζ(x) is the complex-valued function fζ(t), which is
the expected value of the random variable eitζ , i.e., fζ(t) = Meitζ =

∫ +∞
−∞ eitxdFζ(x). It is

known [9] that for an absolutely continuous distribution of a random variable ζ with the
characteristic function fζ(t), the value

Lζ ≡ lim sup
|t|→∞

|fζ(t)|

is equal to 0, for a discrete one Lζ = 1, and for a singular distribution Lζ ∈ [0; 1]. The value
of Lζ for a singular distribution characterizes its closeness to being absolutely continuous or
discrete. The nature of Lζ = 0 or Lζ = 1 for a singular distribution ζ remains mysterious.

For a continuous random variable ζ satisfying the Jessen–Wintner theorem, the condition
Lζ = 0 implies singularity. This is the essence of the method of characteristic functions for
establishing the singularity of a distribution.

2. Object of study. Let s and r be fixed parameters such that 2 ≤ s ≤ r, let A = {0, 1, ..., r}
be an alphabet, and let L = A×A×... be the set of sequences of elements from the alphabet A.
The representation of a number x ∈ [0; r

s−1
] by the series x = α1s

−1+α2s
−2+...+αks

−k+... ≡
∆rs

α1α2...αk...
is called its representation in the base-s system with a redundant alphabet. The

redundancy of the alphabet generally determines the non-uniqueness of number representati-
on. Each pair of parameters (s; r) generates its own unique geometry ([5, 11]).

Given a predetermined sequence (ξk) of independent random variables, each taking values
0, 1, ..., r with probabilities p0, p1, ..., pr, respectively (with all pi < 1), consider the distri-
bution of the random variable ξ = ∆rs

ξ1ξ2...ξk...
.



SINGULAR DISTRIBUTIONS OF RANDOM VARIABLES 201

According to the Jessen–Wintner theorem, the distribution of ξ is either purely absolutely
continuous or purely singular. The problem of distinguishing between these cases by necessary
and sufficient conditions for arbitrary pair of parameters s and r is nontrivial as the problem
of finding an explicit expression for the probability distribution function of ξ is, even for
specific values of the parameters.

With regard to the random variable ξ, in addition to the aforementioned issues, we are
interested in the following problems:

1) In the case of singularity, to describe the topological, metric, and fractal properties of
the Lebesgue zero measure set, where the distribution is supported.

2) In the case of absolute continuity, to find conditions under which ξ can be decomposed
into the sum of two independent components, one of which has a uniform distribution on an
interval.

3) To study the behavior of the absolute value of the characteristic function of the distri-
bution at infinity.

4) To establish the connection between the distribution of ξ and infinite Bernoulli convoluti-
ons as well as convolutions of Cantor-type distributions.

This work is devoted to a partial solution of these problems.
In the paper [14], the case s = 2 = r was thoroughly investigated. It was established that

ξ has an absolutely continuous distribution only. if p1 = 0,5 or p0 = 0,5 = p2. In all other
cases, the distribution of ξ is singular.

In this paper, we consider the case s = 3 = r and obtain a complete solution to the
problem of determining the type of distribution of ξ as well as describe the fractal properties
of the distribution support under certain conditions.

In the sequel, we write

∆rs
α1α2...αk...

= ∆α1α2...αk... =
∞∑
n=1

3−nαn, αn ∈ A ≡ {0, 1, 2, 3}.

The expression ∆α1α2...αk... = x is called the ∆-representation of the number x, and αn is the
n-th digit of this representation. Parentheses in the ∆-representation of a number indicate
a repeating (periodic) part. A one-digit period is called simple.

3. The connection between the distribution of ξ and the infinite Bernoulli convoluti-
on governed by a series. Every number x = ∆α1α2...αn..., αn ∈ A is a value of the random
variable ξ. The set Eξ of values of ξ coincides with the set of incomplete sums (subsums) of
the series

∞∑
n=1

un =
1

3
+

1

3
+

1

3
+

1

32
+

1

32
+

1

32
+ ...+

1

3n
+

1

3n
+

1

3n
+ ... =

n∑
k=1

uk + rn =
3

2
, (1)

that is, the set E(un) = {x : x =
∑∞

n=1 εnun, εn ∈ {0; 1}, M ∈ 2N}.
Since for the terms un and corresponding remainders rn of the given series the inequality

un < rn holds for all n ∈ N , it follows from Kakeya’s theorem ([8]) that E = [0; 3
2
].

The infinite Bernoulli convolution governed by the series (1) is the distribution of the
sum η =

∑∞
n=1 unηn, where (ηn) is a sequence of independent random variables taking values

0 and 1 with probabilities q0 > 0 and q1 = 1− q0 > 0, respectively.
According to the Jessen–Wintner theorem, the distribution of η is either purely singular

or purely absolutely continuous. Below, it will be shown that it is always singular.
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The distribution of η is a special case of the distribution of ξ, where p0 = q30, p1 = 3q20q1,
p2 = 3q0q

2
1, p3 = q31.

If one attempts to implement a geometric approach to analyzing the distribution of ξ,
difficulties arise due to the non-uniqueness of the ∆-representation of numbers.

4. The number of representations of a number and the overlapping of cylinders.
It is obvious that the equality ∆α1...αk... = ∆c1...ck... is equivalent to

∑∞
k=1 3

−k(αk − ck) = 0.
The numbers 0 = ∆(0) and 3

2
= ∆(3) have a unique ∆-representation, but they are not

the only ones. There exist numbers that have a finite, countable, or even continuum set of
distinct ∆-representations.

Note that there are three pairs of interchangeable consecutive digit pairs in a ∆-represen-
tation of a number, which do not change its value: 03 ↔ 10, 13 ↔ 20, 23 ↔ 30.

Theorem 1. A number whose ∆-representation contains a simple period (a period of one
digit) has a countable set of different representations (except for the numbers 0 and 3

2
).

Proof. 1. First, we show that the number x0 = ∆α1...αk(0) has a countable set of different
representations. Indeed, for an arbitrary-length sequence of twos, we have:

∆α1...αk(0) = ∆α1...αk−1[αk−1](2) = ∆α1...αk−1[αk−1]2...23(0).

Thus, x0 has an infinite set of different representations. Let us show that this set is countable.
Consider an arbitrary representation ∆α1...αk... of the number 1. If we suppose α1 = 0, we get
a contradiction: 1 = ∆0α2α3... ≤ ∆0(3) =

1
2
.

The assumption α1 = 1 also leads to a contradiction: 1
3
≤ 1 = ∆1α2α3... ≤ ∆1(3) =

5
6
.

If α1 = 3, then 1 = ∆3α2...αn... ≤ ∆3(0) = 1, and thus αk = 0 for all k > 1, so
1 = ∆3(0) = ∆(2).

If α1 = 2, we analyze α2. As with α1, we find that α2 /∈ {0, 1}, and if α2 = 3, we uniquely
get 1 = ∆23(0).

If α2 = 2, we continue this process for α3, and so on. This yields 1 = ∆2...23(0) = ∆(2) for
all k ∈ N . Therefore, the number 1 has a countable set of different representations.

The countability of representations of the number ∆0...0(2) is justified analogously. Taking
into account the equalities

∆α1...αk(0) = ∆α1...αk−1[αk−1](2) = ∆α1...αk−1[αk−1](0) +∆0...0︸︷︷︸
k

(2),

∆α1...αk(0) = α1∆1(0) + α2∆01(0) + ...+ αk∆0...0︸︷︷︸
k−1

1(0)

the proof can be considered complete.
2. The countability of the representations of the number x0 = ∆c1...ck(2) follows from item

1, because ∆c1...ck(2) = ∆c1...ck23(0).
3. By replacing pairs of consecutive digits in the ∆-representation (e.g., 03 with 10), we

obtain:
∆(1) = ∆0(3) = ∆10(3) = ∆1...10(3).

Let ∆α1...αn... be an arbitrary representation of the number x0 = ∆(1).
Since ∆0(3) = ∆(1) = x0 < ∆2(0), we must have 2 ̸= α1 ̸= 3. If α1 = 0, then x0 = ∆0(3). If

α1 = 1, then we analyze α2, and so on. For any k ∈ N , we have

∆1...1︸︷︷︸
k

0(3) = ∆(1) ≤ x0 < ∆1...1︸︷︷︸
k

2(0),
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so 2 ̸= αk+1 ̸= 3. If αk+1 ̸= 1, then x0 = ∆1...1︸︷︷︸
k

0(3).

A number x0 = ∆c1...ck(1) with ck ̸= 1 has a countable set of different ∆-representations,
since the pair ck1 has no alternative substitution, and the set c1...ck may have only a finite
number of alternatives, or none at all, if it contains no digits 0 or 3.

4. Since ∆a(3) = ∆[a+1]0(3) = ∆[a+1]1...1(3) = ∆[a+1](1), then according to item 3, the
number x0 = ∆a(3) has a countable set of ∆-representations. The countability of the set of
representations of the number x0 = ∆c1...ck(3) follows from item 3 and the remark above.
Therefore, the ∆-representations of the number x0 are exhausted by the cases described
above.

Corollary 1. Almost all numbers (with respect to the Lebesgue measure) in the interval
[0; 3

2
] have a continuum of different ∆-representations.

Theorem 2. A number whose ∆-representation contains only the digits 1 and 2, each
appearing infinitely many times, has a unique ∆-representation.

Proof. Let ∆α1...αn... be an arbitrary ∆-representation of the number

x0 = ∆11...1︸ ︷︷ ︸
a1

22...2︸ ︷︷ ︸
b1

11...1︸ ︷︷ ︸
a2

22...2︸ ︷︷ ︸
b2

...11...1︸ ︷︷ ︸
an

22...2︸ ︷︷ ︸
bn

..., an, bn ∈ N.

Denote the digits of the given ∆-representation of x0 by c1,c2,...,cn,...
We shall prove that αn = cn for all natural n using the principle of mathematical induc-

tion.
Since ∆(1) = ∆0(3) < x0 < ∆2(0) = ∆1(2), it follows that α1 = 1.
Assume that αj = cj for all j ≤ k. Consider the digit αk+1. There are two possible cases:

1) ck+1 = 1; 2) ck+1 = 2. In the first case:

∆c1...ck(1) = ∆c1...ck0(3) < x0 < ∆c1...ck2(0) = ∆c1...ck1(2),

so αk+1 = 1 = ck+1. In the second case:

∆c1...ck(1) = ∆c1...ck1(3) < x0 < ∆c1...ck3(0) = ∆c1...ck(2),

so αk+1 = 2 = ck+1. Thus, by the principle of mathematical induction αn = cn for all
n ∈ N . The proof for the case where the representation begins with a sequence of twos is
analogous.

Theorem 3. If some ∆-representation of a number x does not contain a simple period and
contains infinitely many digits 0 and 3, then x has a continuum of different representations.

Proof. Under the assumptions of the theorem, the ∆-representation of the number x contains
infinitely many pairs of the form a3 or 0b, where a ̸= 3, b ̸= 0. Each of these pairs admits
an alternative substitution. Therefore, any number satisfying the conditions of the theorem
has a continuum of different ∆-representations.

Corollary 2. The numbers

x = ∆α1...αk 1...1︸︷︷︸
a1

2...2︸︷︷︸
b1

...1...1︸︷︷︸
an

2...2︸︷︷︸
bn

... and y = ∆α1...αk 2...2︸︷︷︸
b1

1...1︸︷︷︸
a1

...2...2︸︷︷︸
bn

1...1︸︷︷︸
an

...

have a finite number of different ∆-representations. Moreover, if αj = 3 for all j = 1, k, then
both x and y have a unique ∆-representation.
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Corollary 3. The set of numbers that have a unique ∆-representation is of continuum
cardinality and has fractal Hausdorff–Besicovitch dimension equal to log3 2.

The set ∆c1...cm of numbers x ∈ E that have a ∆-representation of the form ∆c1...cmα1...αn...,
(αn) ∈ L, is called cylinder of rank m with base c1...cm. It is easy to prove that the cylinder
∆c1...cm is a segment with endpoints a =

∑m
k=1 ck3

−k, b = a+ 1
3m

and clearly,

∆c1...cm =
3⋃

i=0

∆c1...cmi.

A distinctive feature of ∆-representation of numbers lies in the specific overlaps between
cylinders:

∆c1...cmi ∩∆c1...cm[i+1] = ∆c1...cm−1i3 = ∆c1...cm−1[i+1]0, i = 0, 1, 2,

i.e., the intersection of two “adjacent” cylinders is itself a cylinder of the next rank.

5. Function with fractal level sets. From the obtained results concerning the number
of rs-representations of numbers, one can perform a fractal analysis of the level sets of the
function. Let us consider a model example with s = 3 = r.

Let us recall that the traditional quaternary representation of numbers x ∈ [0; 1] is called

x = ∆4
α1α2...αn... =

α1

4
+

α2

42
+ ...+

αn

4n
+ ...,

where αn ∈ {0, 1, 2, 3}, in particular ∆4
α1α2...αk(0)

= ∆4
α1α2...αk−1[αk−1](3).

By agreeing to use, among the two quaternary representations of a quaternary-rational
number, only the one that has the period (0), we define the function f by

f(x = ∆4
α1α2...αn...) = ∆α1α2...αn...

Theorem 4. The function f has level sets of different cardinalities:

1) singletons and finite sets;

2) countable and continuum sets,

including sets of positive fractal dimension.

Proof. It is clear that the cardinality of the set f−1(y0) at level y0 = f(x0) is equal to the
cardinality of the set of different representations of the number y0 ∈ [0; 3

2
].

As noted above, the numbers 0 and 3
2

have unique representations: f−1(0) = ∆4
(0),

f−1(3
2
) = ∆4

(3) = 1. According to Theorem 2, the number ∆(12) = 5
8

also has a unique
representation f−1(5

8
) = ∆4

(12) =
2
5
.

The number y0 = ∆1010(12) = ∆0310(12) = ∆0303(12) = ∆1003(12) has a finite number of
formally different representations, and therefore has a finite level set

{∆4
1010(12),∆

4
0310(12),∆

4
0303(12),∆

4
1003(12)}.

The level set y0 = ∆(1) = ∆1...1︸︷︷︸
n

0(3), as follows from the above, is countable.

The number y0 = ∆(10) has a continuum set of different representations, and thus the
level set of the function f is continuum: y−1

0 = {x : x = ∆4
a1b1a2b2...anbn...

}, where (an, bn) ∈
{(1, 0), (0, 3)}.
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Writing the number x = ∆4
a1b1a2b2...anbn...

in the form

x = ∆4
a1b1a2b2...anbn...

=
a1
4

+
b1
42

+
a2
43

+
b2
44

+ ... =

=
4a1 + b1

42
+

4a2 + b2
44

+ ... =
α1

16
+

α2

162
+ ...+

αn

16n
+ ...,

where αn ≡ 4an+bn ∈ {3; 4}, we see that the set y−1
0 consists of points whose representations

in base 16 use only two digits, 3 and 4. It is well known that the set is a continuum, self-similar
Lebesgue measure zero set with fractal dimension log16 2 = 1

4
.

6. Singularity of the distribution. The set Eξ under the condition p0p1p2p3 ̸= 0 is the
spectrum of the distribution of ξ. If p0p1p2p3 = 0, then the spectrum of ξ is a subset of E. If
either p0 = 0 or p3 = 0, then the spectrum is [0; 1] or [1

2
; 3
2
], respectively. In all other cases,

the spectrum is a nowhere dense fractal set. A nontrivial case arises when p0pip3 ̸= 0 and
pj = 0, for i ̸= j, j ∈ {1, 2}.

Lemma 1. The set C[∆; {0, 1, 3}] = {x : x = ∆α1α2...αn..., αn ∈ {0, 1, 3}} is a nowhere
dense, N -self-similar set of zero Lebesgue measure, whose fractal (Hausdorff) dimension is
x = log3

3+
√
5

2
.

Proof. Let ∆′
c1...cm

≡ ∆c1...cm ∩C. Since C ⊂ [∆3 ∪ {∆1 ∪∆0}],∅ = ∆1 ∩∆3, it follows that

C
1
3∼ ∆′

3. Since ∆′
13 ⊂ C and ∆′

13 ∩∆0 = ∅, we have C
3−2

∼ ∆′
13.

Moreover, ∆00 ∪∆01 is congruent (isometric) to ∆10 ∪∆11, ∆′
0 ∪∆′

1

1
3∼ ∆′

i0 ∪∆′
i1, and

C ⊂ ∆3 ∪∆13 ∪ [(∆00 ∪∆01) ∪ (∆10 ∪∆11)].

Furthermore, C
1
33∼ ∆′

i13, i = 0, 1. Taking into account that ∆003 = ∆010, ∆030 = ∆100, we
have

∆′
000 ∪∆′

001
∼= ∆′

010 ∪∆′
011

∼= ∆′
100 ∪∆′

101
∼= ∆′

110 ∪∆′
111

32∼ ∆′
0 ∪∆′

1,

and we obtain

C ⊂ ∆′
3 ∪∆′

13 ∪

[
1⋃

i1=0

...

1⋃
in=0

∆′
i1...in13

]
∪D,

where D is a countable set, and C
k∼ ∆′

i1...in13
, with k = 3−(n+2). Hence, C is an N -self-similar

set, and its dimension is the solution of the equation

1

3x
+

∞∑
n=0

2n

3(n+2)x
= 1,

that is x = log3
3+

√
5

2
.

Remark 1. The set C[∆; {0, 2, 3}] has the same properties as C[∆; {0, 1, 3}]. The proof is
analogous to the one above.
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Theorem 5. Let p0p1p2p3 = 0.
1. If pi = pi+1 = pi+2 =

1
3
, then the random variable ξ has a uniform distribution on the unit

interval.
2. If there exists a pj such that 0 ̸= pj ̸= 1

3
, then the distribution of the random variable ξ

is a singular distribution, and:
2.1) if two of the probabilities are zero, then ξ has a Cantor-type distribution with a

spectrum of fractal dimension log3 2;
2.2) if only one of the probabilities is zero, and p1p2 = 0, then ξ has a Cantor-type

distribution with a spectrum of fractal dimension log3
3+

√
5

2
;

2.3) if only one of the probabilities is zero, and p0p3 = 0, then ξ has a singular distribution
with a strictly increasing probability distribution function, and the fractal dimension of the
essential support of its density is − log3 p

p1
1 pp22 ppii .

Proof. 1. If p3 = 0, then ξ is a random variable whose digits ξn in the ternary representation
take values 0, 1, 2 with probability 1

3
. Such a random variable is known to have a uniform

distribution on the interval [0; 1].
If p0 = 0, then consider the random variable ξ̂ = ξ − 1

2
= ξ −

∑∞
n=1

1
3n

, i.e., the random
variable

∑∞
n=1

ξn−1
3n

= ∆3
ξ′1ξ

′
2...ξ

′
n...

, where ξ′n takes values 0, 1, 2 with equal probabilities 1
3
.

Since ξ and ξ̂ have equivalent distributions, and ξ̂ is uniformly distributed, it follows that ξ
is uniformly distributed on [1

2
; 3
2
].

2.1) If p3 = 0 = pi, then the spectrum of the distribution of ξ is a Cantor-type set C[rs, V ],
where V = {0, 1, 2}\{i}, which is known to be a self-similar set with fractal dimension log3 2.
A similar situation occurs p1 = 0 = p2. If p3 ̸= 0 = p0 and p1p2 = 0, then the corresponding
random variables ξ and ξ̂ have equivalent distributions. This last case corresponds to a
random variable with independent digits in the classical ternary representation. Since one
digit has zero probability, ξ has a singular Cantor-type distribution.

2.2). In the case p1p2 = 0, the spectrum of the distribution of ξ coincides with the set
C[rs; {0, 2, 3}] or C[r3; {0, 1, 3}]. Therefore, Сlaim 2.2) follows from the previous lemma and
remark.

2.3). Let p0p3 = 0. If p3 = 0, then the random variable ξ has independent and identically
distributed ternary digits, and if pj ̸= 1

3
for some j, then the distribution is singular.

Indeed, in this case, the set of growth points of the probability distribution function is the
interval [0; 1]. The probability that ξ belongs to the set E[3; p0, p1, p2] of numbers whose digit
frequencies match pi for each i = 0, 1, 2 is equal to 1. As it was shown by Eggleston ([4]) and
Billingsley ([3]), the set E has Lebesgue measure zero and Hausdorff–Besicovitch dimension
− log3 p

p0
0 pp11 pp22 . Therefore, ξ has a singular distribution with a strictly increasing distribution

function ([10]).
If p0 = 0, then the same conclusion holds for the random variable ξ̂ = ξ − 1

2
, whose

distribution is equivalent to distribution of ξ.

In the case p0p1p2p3 ̸= 0, we use the method of characteristic functions.
The characteristic function of the distribution of ξ has the form

fξ(t) =
∞∏
k=1

φk(t), φk(t) = p0 + p1e
it·3−k

+ p2e
i2t·3−k

+ p3e
i3t·3−k

=
3∑

m=0

pm cos
mt

3k
+ i

3∑
m=0

pm sin
mt

3k
,

and satisfies the functional equation fξ(t) = φ1(t)fξ(
t
3
). In particular, fξ(2πns) = fξ(2πn),

∀n ∈ N and Lξ ≥ |fξ(2π)|.
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Theorem 6. If p1 = 1
3
= p2, then the random variable ξ = ∆ξ1ξ2...ξn... with independent di-

gits ξn taking values 0, 1, 2, 3 with probabilities p0, p1, p2, p3, respectively, has an absolutely
continuous distribution. In this case, the distribution of ξ is the convolution of a uniform di-
stribution on [0; 1] and a singular Cantor-type distribution. In all other cases, the distribution
of ξ is singular.

Proof. If p1 = 1
3
= p2, then ξ can be expressed as the sum of two independent random

variables: τ , which has a uniform distribution on [0; 1], and ζ, which has a singular Cantor-
type distribution.

Indeed, a uniformly distributed random variable on [0; 1] has the form τ =
∑∞

n=1 3
−nτn,

where (τn) are i.i.d. random variables taking values 0, 1, 2 with equal probabilities 1
3
. The

random variable ζ =
∑∞

n=1 3
−nζn, where ζn are independent random variables taking values

0, 1 with probabilities x > 0 and 1− x > 0, has a singular Cantor-type distribution.
The convolution of the distributions of τ and ζ is the distribution of sum τ +ζ if addends

are independent. The identity ξ = τ + ζ is equivalent to system of equations ξn = τn + ζn,
n = 1, 2, .... This system is equivalent to the following consistent system of equations:

p0 = P{ξn = 0} =
1

3
x, p1 = P{ξn = 1} =

1

3
(1− x) +

1

3
x =

1

3
,

p2 = P{ξn = 2} =
1

3
x+

1

3
(1− x) =

1

3
, p3 = P{ξn = 3} =

1

3
(1− x),

which implies p1 =
1
3
= p2, p0 + p3 =

1
3
, and x = 3p0.

Thus, under the condition p1 = 1
3
= p2 the distribution of ξ is a convolution of uniform

and singular distributions, hence it is absolutely continuous.
Now consider the case where p1 ̸= 1

3
or p2 ̸= 1

3
. We use the characteristic function method

to obtain sufficient conditions for singularity, specifically proving that Lξ > 0, which implies
singularity. We first show that the infinite product

∞∏
k=2

φk(2π) ̸= 0. (2)

Since
∑3

m=1 pm sin 2πm
3k

> 0 for all k > 1, it follows that φk(2π) ̸= 0. It is known that
the absolute convergence of the infinite product (2) is equivalent to the convergence of the
series

∑∞
k=2 |φk(2π)− 1|. We prove the convergence of this series using the comparison test.

Let us estimate uk = |φk(2π)− 1|

uk =
[( 3∑

m=0

pm cos(2πm3−k)− 1
)2

+
( 3∑

m=0

pm sin(2πm3−k)
)2] 1

2
=

=
[( 3∑

m=0

pm

)2

+ 4
( 3∑

m=1

pm sin2(πm3−k)−
∑

0̸=i ̸=j ̸=0

pipj sin
2(π(i− j)3−k)

)
− 1

] 1
2
=

= 2
[ 3∑
m=0

pm sin2(πm3−k)−
∑

0̸=i ̸=j ̸=0

pipj sin
2(π(i− j)3−k)

] 1
2 ≤

≤ 2
[ 3∑
m=1

pm sin2(πm3−k)
] 1

2 ≤ 2
[ 3∑
m=1

pm sin2(3π · 3−k)
] 1

2 ≤ 2 sin(3π · 3−k) ≤ 6π · 3−k.

Let us note that the last three inequalities are valid for all k > 2. From the final inequality
and the comparison test, it follows that the series

∑∞
k=2 |φk(2π)−1| converges, and hence so
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does the infinite product (2), which means that inequality (2) holds. Therefore, |fξ(2π)| = 0
if and only if φ1(2π) = 0, i.e., when

3∑
m=0

cos
2πm

3
= 0 =

3∑
m=0

sin
2πm

3
,

which is equivalent to the system of equations p0 − 1
2
p1 − 1

2
p2 + p3 = 0 =

√
3
2
(p1 − p2). Thus,

|fξ(2π)| = 0 if and only if p1 = 1
3
= p2, and under this condition, as it was shown earlier, the

distribution of ξ is absolutely continuous.
Hence, when p1 ̸= 1

3
or p2 ̸= 1

3
, we have |fξ(2π)| ≠ 0, and therefore Lξ > 0 which implies

that the distribution of ξ is singular.

Corollary 4. The random variable η has a purely singular distribution.

The distribution of η is singular because the system 3q20(1 − q0) = 1
3
= 3q0(1 − q0)

2 is
inconsistent.

7. The distribution of ξ as a convolution of Cantor-type distributions.

Lemma 2. The sum of two independent singularly distributed random variables θ =∑∞
n=1 θn3

−n and ε =
∑∞

n=1 εn3
−n, where (θn) and (εn) are sequences of independent random

variables taking values 0, 2 and 0, 1, respectively, with probabilities u, 1 − u and v, 1 − v
has a singular distribution whose spectrum is the interval [0; 3

2
].

Proof. Indeed, the distribution of the sum θ+ ε belongs to the same class of distributions as
ξ with corresponding parameters p0 = uv, p1 = u(1− v), p2 = v(1− u), p3 = (1− u)(1− v).
However, the system u(1− v) = 1

3
= v(1− u) is inconsistent. Therefore, by Theorem 6, the

distribution of θ + ε is singular.

Theorem 7. If p0 = (p0 + p1)(p0 + p2), then the distribution of ξ is the convolution
of two Cantor-type distributions, namely, the distributions of the random variables θ =
∆θ1θ2...θn..., ε = ∆ε1ε2...εn..., where (θn) and (εn) are sequences of independent random vari-
ables taking values 0, 2 and 0, 1 with the probabilities p0 + p1, 1 − (p0 + p1) and p0 + p2,
1− (p0 + p2), respectively.

Proof. If P{θn = 0} = x, P{θn = 2} = 1 − x, P{εn = 0} = y, P{εn = 1} = 1 − y, then
the equality ξ = θ + ε is equivalent to the system p0 = xy, p1 = x(1 − y), p2 = (1 − x)y,
p3 = (1 − x)(1 − y), which, in turn, is equivalent to x = p0 + p1, y = p0 + p2, p0 = xy =
(p0 + p1)(p0 + p2).

Remark 2. For p0 = p1 = p2 = p3 =
1
4
, the condition p0 = (p0 + p1)(p0 + p2) is satisfied. In

this case, the distribution of ξ is singular.

8. Concluding remarks. We were not able to obtain an explicit expression for the probabi-
lity distribution function Fξ(x). The problem of description of the topological, metric, and
fractal properties of the essential support for the density of distribution of ξ, Nξ = {x :
F ′
ξ(x) > 0 or F ′

ξ(x) does not exist} under the condition p0p1p2p3 ̸= 0 remains open. The
main difficulties arise from the non-uniqueness of the number representation by the series
and the overlapping of cylinders. Despite the relatively simple structure of the overlaps,
computing the probabilities of cylinders remains challenging.

Acknowledgements. This work was supported by a grant from the Simons Foundation
(SFI-PD-Ukraine-00014586, M.P., S.R.)



SINGULAR DISTRIBUTIONS OF RANDOM VARIABLES 209

REFERENCES

1. S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyi, G. Torbin, Jessen–Wintner type random variables and
fractal properties of their distributions, Mathematische Nachrichten, 279 (2006), №15, 1619–1633.

2. S. Albeverio, Ya. Goncharenko, M. Pratsiovytyi, G. Torbi, Convolutions of distributions of random
variables with independent binary digits, Random Operators and Stochastic Equations, 15 (2007), №1,
89–104.

3. P. Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York, 1965, xiii+193 p.
4. H.G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., 20

(1949), 31–36.
5. Ya.V. Goncharenko, I.O. Mykytiuk, Representations of real numbers in numeral systems with redundant

set of digits and their applications, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Dragomanova, Ser.
1. Fiz.-Mat. Nauky, 5 (2004), №5, 242–254. (in Ukrainian)

6. Ya. Goncharenko, M.V. Pratsiovytyi, G. Torbin, The metric-topological and fractal properties of the
convolutions of singular distributions of random variables with independent binary digits, Probability
Theory and Mathematical Statistics, 67 (2002), 11–20.

7. B. Jessen, A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc.,
38 (1935), №1, 48–88.

8. S. Kakeya, On the partial sums of an infinite series, Tohoku Sci Rep., 4, (1914), 159–163.
9. E. Lukacs, Characteristic Functions, 2nd ed. – New York: Hafner Publishing Company, 1970.
10. G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist., 42 (1971), №2,

1922–1929.
11. I.O. Mykytyuk, M.V. Pratsiovytyi, The binary numeral system with two redundant digits and its

corresponding metric theory of numbers, Scientific Notes of M.P. Dragomanov National Pedagogical
University. Series: Physical and Mathematical Sciences, 4 (2003), №4, 270–279. (in Ukrainian)

12. M.V. Pratsiovytyi, Convolutions of singular distributions, Reports of the National Academy of Sciences
of Ukraine, 9 (1997), 36–43. (in Ukrainian)

13. M.V. Pratsiovytyi, On finite convolutions of singular distributions and a “singular analog” of the
Jessen–Wintner theorem, Ukrainian Math. J., 50 (1998), №8,1233–1241.

14. M.V. Pratsiovytyi, Distributions of sums of random power series, Reports of the National Academy of
Sciences of Ukraine, 5 (1996), №5, 32–37. (in Ukrainian)

15. M.V. Pratsiovytyi, A fractal approach to investigation of singular probability distributions, Kyiv: Nats.
Pedagog. Univ. Mykhaila Dragomanova, 1998, 296 p. (in Ukrainian)

16. J. Reich, Some results on distributions arising from coin tossing, The Annals of Probability, 10 (1982),
№3, 780–786. https://doi.org/10.1214/aop/1176993786

17. J. Reich, When do weighted sums of independent random variables have a density – some results and
examples, The Annals of Probability, 10 (1982), №3, 787–798. https://doi.org/10.1214/aop/1176993787

18. B. Solomyak, On the random series
∑

±λn (an Erdös problem), Ann. of Math., 142 (1995), №3, 611–625.
https://doi.org/10.2307/2118556

19. T. Zamfirescu, Most monotone functions are singular, Amer. Math. Mon., 88, (1981), 47–49.

Institute of Mathematics of NASU
Dragomanov Ukrainian State University Kyiv, Ukraine

prats4444@gmail.com
ratush404@gmail.com

Received 08.12.2024
Revised 21.06.2025


