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In the present investigation, inspired by the work on Yamaguchi type class of analytic
functions satisfyingthe analytic criteria %e{@} > 0, in the open unit disk A = {z € C: |z] <
1} and making use of Saldgean-difference operator, which is a special type of Dunkl operator
with Dunkl constant ¥ in A , we designate definite new classes of analytic functions Rf(w) in
A . For functionsin this new class , significant coeflicient estimates |as| and as| are obtained.
Moreover, Fekete-Szegs inequalities and second Hankel determinant for the function belonging
to this class are derived. By fixing the parameters a number of special cases are developed are
new (or generalization) of the results of earlier researchers in this direction.

1. Introduction and motivation. Let A be the family of functions f analytic in the
open unit disk A := {z € C: |z| < 1} normalized by f(0) = f’(0) —1 = 0 and having
Taylor-Maclaurin’s series of the form

f(z) :z—i—Zanz” (z € A). (1)

Denote by S, the class of functions of the form (1) which are univalent in A. For given two
analytic functions f and g, one will say f is subordinate to g written as f(z) < g(z) if there
exists an analytic functions w(z) satisfying the conditions of Schwarz lemma (i.e. w(0) =0
and |w(z)| < 1) such that f(z) = g(w(z)).

Denote by P the class of analytic functions p(z) on A of the form

px) =1+ e, (2)

satisfying the conditions p(0) = 1 and Rep(z) > 0(z € A). Here p(z) is called the
Caratheodory function (see [5]).

Let 1) be an analytic function on A such that: 1) Rey(z) > 0(z € A); 2) ¥(0) = 1,
¥'(0) > 0; 3) v» maps A onto a domain starlike with respect to 1 and symmetric with respect
to the real axis. W. Ma and D. Minda (see [19]) introduced the following two classes of
analytic functions
2F(2)

<6(z) (e A}, (3
fm) HREES )
21" (2)

f'(2)
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The classes S*(¢) and C(%)) unified various subclasses of starlike and convex functions in A.
For example, taking 1(z) = h,(z) = 2U=242 (0 < o < 1), the class S* () := S*(¢)) is the

class of starlike functions of order o and tlhezclass C(a) := C(v) is the class of convex functions
of order a. The classes S* := §*(0) and C := C(0) are the well-known classes of starlike and
convex functions, respectively. Further if we set ¢(2) = %I—gz (-1<B<A<1lze€A)
we get the well know subclasses S*[A, B] and C[A, B]. Following the definitions of W. Ma
and D. Minda starlike and convex functions, various classes of analytic functions defined
by means of subordination are established recently (see [1,34]). There has been triggering
interest to introduce and study new subclasses of analytic functions based on differential and
difference operators in geometric function theory.

To define a new function class we recall the following difference operator. For a function

feAand ke Ny={0,1,2,3,---} we define a linear operator D%: A — A as follows:
Dyf(2) = f(2),
k

DEf(2) =Dy(DEf(2) =2+ Z {n + §<1 + (=" anz" (z € A). (4)

The operator D% is known as the Silagean-difference operator (see |9,25]). This operator
is a modified Dunkel operator of complex variables (see [4, 8]). Dunkel operator describes
a major generalization of partial derivatives and realizes the commutative law in R". In
geometry, it attains the reflexive relation, which is plotting the space into itself as a set of
fixed points.When ¢ = 0, DX = DF = D* is known as the Siligean differential operator
(see [32]).

Let us give some simple examples of the actions of the introduced operator. For f(z) =
zcosz = z—§+i—?—~-- we have D1f(z) = 2—223%—%—--- . For g(z) =In(1 + 2) =
z—%—k%—--- we get Dig(z) =z —22+328 =2+ Forg(z) = & =2+ 22+ 254+
one has ([9]) D1g(z) = =+ 22" +42° + 427 +62° + 62° + -+ . For g(2) = 55 = 2 +
222 +32% 4+ --- we obtain ([9]) Dig(z) = 2 + 422 + 1223 + 162* + 302° + 362° + --- and

@k
D) )y o9k 3349yt 44

z
In 1966 K. Yamaguchi [37] defined a class satisfying Re(f(z)/z) > 0 and obtained some

coefficient estimates. Using of Salagean-difference operator, we will introduce the following
class of functions, defined by subordination.

Definition 1. Let ¢»: A — C be an analytic function such that Rey(z) > 0(z € A),
¥(0) =1, ¥'(0) > 0 and ¥ maps A onto a domain starlike with respect to 1 and symmetric
with respect to the real axis. A function f € A is said to be in the class RE(v) if

2 Ly en (5)

Remark 1. Taking ¢ = 0 and £ = 1 in the above definition, we obtain the class
Ro(¥) =R(¥) ={f € A: f'(2) <¥(2), 2€A}.
Remark 2. If we set ¢(z) = 342 (-1 < B< A<1,z€ A) in (5) we get

1+Bz
1}.

R§(1+Az) _ RE(A, B) = {feA:

D5f(2)

z

1+ Bz
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It may be noted that for a = 0, k =1 and 9 = 0, the class RE(a) reduces to the class
R of analytic function whose derivative has positive real part in A studied in [20].

A lot of works have been done in the direction of finding upper bounds for as, as and
|ag—pa3] for the function f in the certain subclasses of A for some real or complex parameters
w. This work was originated by M. Fekete and G. Szegs [7|. M. Fekete and G. Szegs gave
a sharp estimate of non-linear functional |az — ua3| for real parameters u for subclasses of
A. This is known as Fekete-Szegé inequality. Several researchers solved the Fekete-Szegd
problem for various subclasses of the class of S (see [6,13,14,27-29,33|).

In 1976, J. W. Noonan and D. K. Thomas [26] defined ¢'"* Hankel determinant of function
fforg>1andn>1as

Qp Ap1° Aptqg-1
Ap+1 Apy2 - Ap+q
Hq(n) = . . ’
Antq—1 Qniyq " Ani2q—2

where a; = 1. For brief history of Hankel determinant (see [30]). A good amount of literature
exist for finding upper bound on |H»(2)| for various subclasses of S. A. Janteng, S. A. Halim,
M. Darus [10,11] derived the exact bounds for |H(2)| for the class of starlike functions (S*),
the class of convex functions (C) and the class of functions whose derivatives have positive
real parts (R) in A . S. K. Lee, V. Ravichandran, S. Supramaniam [16] investigated |H»(2)| in
the general class S*(1) of starlike functions with respect to a given function ¢. D. V. Krishna,
T. Ramreddy [15] generalized the result from [11] giving the sharp bound of |Hy(2)| in the
class of starlike and convex functions of «. P. Zaprawa [36] showed that if f € T, the class
of typically real functions, then |H3(2)| < 9. Apart from these, many research all over the
globe obtained the upper bounds for various subclasses of univalent analytic functions and
their results are available in literature (see [2,3,12,22-24]).

In the present paper, following the technique used by R. J. Libera, E. J. Zlotkiewicz (see
[17,18]), Fekete-Szegd inequality for the class R (1)) is completely settled for real and complex
parameters p. Further, we obtain the upper bounds of |H3(2)| for the above mentioned class.

2. Preliminaries. We need the following lemmas in order to investigate the main results:

Lemma 1 ([5,17-19]). If p € P is of form (2), then

] <2 (n 2 1), (6)
lco — ved| < 2max{1,|2v — 1|} (v €C), (7)
1
e = 5l + (4 Dal, 0
1

c3 = Z[c‘i’ +2(4 —cP)err — (4 — c)err® +2(4 — ) (1 — |z} 2], 9)
for some complex numbers x, z satisfying |xz| < 1 and |z| < 1. The estimates in (6) and (7)

are sharp for the functions p(z) = = and p(z) = % (z € A).

Lemma 2 ([19]). Let p € P be of form (2). Then
—4v+2, v<O0,
lcg —vei] << 2, 0<v<l,
v — 2, v>1.
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When v < 0 or v > 1, the equality holds if and only if p(z) = 1= or one of its rotation. If

1
0 < v < 1, then the equality holds if and only if p(z) = }sz or one of its rotation. If v = 0,

the equality holds if and only if p(z) = (3 + %) T2+ (3 — %) 12, (0 <7 < 1) or one of its

rotation. If v = 1, the equality holds if and only if p is the reciprocal of one of the functions
such that the equality holds in the case of v = 0.

Although the above upper bound is sharp, when 0 < v < 1, it can be improved as follows
2 2 1 2 2 1
lca — vei| + v|e| §2<0<V§§>, lea — vei| + (1 — v)|eq| §2<§<V§1>.

3. Coeflicient estimate results.

Theorem 1. Let ¢(2) = 1+ Ajz + Ayz? + -+ with Ay > 0 and A,, € R. If the function
f € A of form (1) belongs to the class R% (1)), then

A
jaa] < (10)
las| < E ilﬁ)k max{l, % }, (11)
1
A Ay (34 0)F
— nal?l < 1 =2 .
|a3 IMCL2| = (3_’_19)]C maX{l, A1 92k MAI }a ne C (12>

Proof. Let the function f € A be in the class RE(1)). Hence by Definition 1 there exists an
analytic function w with w(0) = 0 and |w(z)| < 1 in A such that

21—y ea (13)
Define the function p(z) given by
1+ w(z) 2
p(z):l_—M:1+clz+cgz S RREI (14)
Clearly p € P. From (14) it follows that
w(z):iéz;ii:%z+(%—%)22+<C§3—%+§)23+---. (15)

Now

A 1 2\ A,
Dlw(z)] =1+ 1clz+—[A1 (02—0—1)+L01} e

2 2 2 2
1 c c Asc?
+§ |:A1 (03—6102+Zl) +A2 <Clcg— 51) +%:| 23+ . (16)
From (2) we have
@k
0y/(2) =1+ 2%a02 + 3+ 1) aszz® + 4Fay2® +-- - . (17)

z
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Using (16) and (17) in (13) and equating the coefficients of z, 2% and z* on both sides we get

. A1C1 . 1 C% AQC%
27 g BT R )k [Al <62_§ L) ]

1 c Asc?
ay = —22k+1 [Al <Cg — C1C2 + Zl> + A2 <01C2 — 5) + —z 1:| (18)
: Ay
By applying Lemmal, we get |as| < o
1 C2 A262 Al A2
=sarar (e 2) Tyl il
|as] 2(3_1_19),6) 25 + 2 | S GBrof max A
Therefore,
lag — pa3| = Lk — vl (19)
3T HRI= g gl T Al
where v =111 — ﬁ—f + (3;:)kuA1 .
By application of (7) of Lemma 1 we obtain the desire estimate (12). O

Corollary 1. If f(z) given by (1) belongs to the class RE(A, B), then

A-B 3+ 9)F
|ag — paj)| §mmax{1a‘3+( 2%) M(A—B)‘}'

Proof. For the function ¢ (z) = }igz (1< B<A<1)wehave ¢(2) =1+ (A— B)z —

B(A — B)z? 4+ --- . Taking A; = (A — B) and Ay, = —B(A — B) in Theorem 1 we get the

desire result. O

Setting A =1—-2a (0 < a < 1)and B = —1 in Theorem 1 we get the result for the
class RE(a) as follows:

Corollary 2. Let f(z) € RE(a). Then

2(1 — )
oo = ) < S {1, E0

G 1—wu(1—a)'}.

Remark 3. Fixing ¥ = 0 in Theorem 1, we get the upper bound for the function belonging
to the subclass of A associated with the Sélagean differential operator given by

b

The bounds of |Hy(1)| for g = 1 follows from the Theorem 1 as follows:

b

Theorem 2. Let u € R. If the function f given by (1) belongs to the class R% (1), then

Ay A, 3F
|ag — pa3| < 3—kmax{1, A ﬁﬂ%

Corollary 3. If the function f given by (1) is in the class RE(v)), then

Ay (3+09)F

A_l 92k Ay

A
|H2(1)| = |a3 - CL§| < ﬁmax{l,
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k
sy (32 - G ), <
|ag — paj| < (:},ﬁ—fg)k, 01 < p < 0o,
k
sy (S ua - 22), =6
Furthermore, for 6, < u < 61 + k,
A
2 2 1
- -0 <
and for 6, + k < p < 61 + 2k,
A
2 2 1
as — pay| + (01 + 2k — p)|as|* < ————,
|3 /1’2’ (1 :U’)’ 2’ —(3+19>]€
where 6, = (3f§)k (AQA’%‘h), 0y = (3ﬁ)k Al/j%A?, k = ﬁ. The obtained inequalies is

sharp.

Proof. From (19), we have |az — pa3| = 2(311—119);“\62 — vc?|. The result follows by application
of Lemma 1 in (19). This completes the proof of Theorem 2. To show that the bounds are

sharp, we define the functions the functions F,, and G, (0 < n < 1), respectively, with
F,(0) =0 = F;(0) — 1 and G,(0) = 0= G (0) — 1 by

DAy (A1) g G, (Lt
z 14+nz z 1+nz
Clearly the functions Ky, = (2" '), F,, G, € RE(¢). Also we write Ky := Ky, .

If p < &y or pu > 62, then the equality holds if and only if f is K or one of its rotations.
When 0; < i < 09, then the equality holds if and only if f is K, or one of its rotations. If
p = 01 then the equality holds if and only if f is F;, or one of its rotations. If ;1 = 0, then
the equality holds if and only if f is G, or one of its rotations. m

) , respectively.

In the following theorem, we obtain the upper bound of the second Hankel determinant
|Ha(2)] for f € Ry(y).

Theorem 3. Let k € Ny, 9 € R. Suppose that f € RE(1).
(i) If Ay, As and Aj satisfy the inequalities
2((3+ )% — 2%7)|Ag| + (3+0)F —2MA, <0,|(3 4+ 9)*A A5 — 23FAZ] — 2% A2 <,

2 A%
then |a2a4 — a3| S W

(ii) If Ay, Ay and Aj satisfy the conditions

2[(3 + )% — 2%M]|Ay| + ((3 + )% — 23FTHA; > 0,

20(3+ )2 A Ag — 2AZ — 20(3 + V)% — 25| Az Ay — (3 + 9)%A2 > 0,

or the conditions

2[(3 + )% — 2°M]|Ay| + ((3 + 9)** — 21 A, <0,

(34 9)2F A As — 2% A2 — 23 A2 > 0,

then |CL2(L4 — CL%’ S WKS + 19)2kA1A3 - 23kAg|
(iii) If Ay, Ay and Aj satisfy the conditions

2{(3 + 19)2]@ o 23k”A2’ + ((3 + 19)2]@ o 23k+1)A1 > 0’
2|(3 + ) A A5 — 23 A2 — 2[(3 4+ 9)*F — 23| Ay AL — B+ 9)*AZ <0
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then
Q
) A% R7 QS(]’ PS_Za
|a2a4—a3|§23k+2 ek < 16P +4Q + R, Q@ =0, PZ—%? Q <0, PZ—%
(3+17) APR—Q? Q>0 P<-9
iP o S TR

where
2
P =|(3+9)*As — 23k%|c4 —2|(3 +9)% — 23%||Ay| — [(3 + )% — 23%]A4,
1
Q = 4{2[(3 + )% — 2°%]|Ay| + [(B 4+ )% — (2¥TH AL}, R = 162%A,.

Proof. Substituting the values of as, az and a4 from (18) in (asay — a2) we have
agay — a3 = M[ayic} + aacicy + ascies + aucs), (20)

2
where M = Mw, ap = ((3 + 7,9)2k — 23k)(A1 — 2A2) + (3 + '19)2kA3 — 2—?23k’ Qg =

—4((3 +9)%F — 23) (A} — Ay), a3 = 4(3 + 9)*A;, ay = —23%T2A,. Since the functions p(z)
and p(e?z) (6 € R) are in the class P, without loss of generality, we can assume that
c1 = ¢ € [0,2]. Substituting the values of ¢ and ¢3 from (8) and (9) in (20), it follows that

4 20(4 — (2
|CL26L4—CL§|IM‘(4&1+20[2+O&3+O&4)%+(042+063+OJ4)M
2 4 — 2
+ (a4 — ) — asc?) % + 0‘730(4 — A1 - [zP)z]. (21)

Now,

A2
4oy + 200+ a3 +ay =4 [(3 +9)2F A3 — 23kA_2 g+ s+ ay = 4[(3+9)%F — 23¥]A,,
1
y(4 — ) —azc? = =2P2A (4 — ) — 4(3 + 9) A2,
Q3C

T(4 — ) =23 +9)*Ac(4 - A).

Substituting these values in (21) and applying triangle inequality |z| = p we obtain

|asas — a3 < MH(c, p), (22)
where
H(e.p) = |(3 4+ 0)Aq — 2422 [ot 1 21(3 4 ) - 2%|Aslepld — )+
234 0P A4 — ) £ (A — AN(2 = 2 — (34 ) — 2%,
OH

3 = 2[(3 4+ 9)** — 2% ||Ag|c? (4 — ) + 2p(4 — A)AL(2 — )2 — (B + )% —2%)] > 0.

This shows the function H(c,p) is an increasing function of p on the closed interval [0, 1].
Hence

max H(c,p) = H(c,1) = Pt* + Qt + R, (23)

0<p<1
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where

A2
P=|3+1)%A; — 23kA—2 A —2|(3+9)%F — 23%||Ay| — [(3 4 09)%F — 2%F]A,,
1

Q = 4{2[(3 + )% — 2| A, + [(B 4+ )% — (2THAL]}, R=162%A,, t=c%

Therefore, in view of (22) and (23) we have

Al Al 2
\a2a4 CL3| S m&l&éH(C 1) 23k+4(3+?9)2k gEaX(Pt +Qt+R> (24)

Making use of standard result proven for f as defined in (3), that the optimal value of
quadratic expression with standard computations as shown in Lee et al., [16](see pp-6, given
by equation(16))we have:

R, Q<0, P<-9
gE%(Pt +Qt+R)=¢16P+4Q+R, Q>0,P>-%9 @Q<0, P>-% (25
4PR—Q?
T Q>0, P<—%.
n (24) we obtain the desire estimates. O

Fixing ¥ = 0 and k£ = 1 in Theorem 3, we obtain the upper bound of the second Hankel
determinant for the class R(v) as follows:

Corollary 4. Suppose that f € R(¢). (i) IfAl, A2 and A satisfy the conditions |A,| < 5t

and [9A;A3—8A3|—8AT <0, then |ayas—a3| < AL (i) IfAy, Ay and Ay satisfy the cond1t1ons
Ao > 2 and  2|9A1A; — 8AZ| — 2{As|A; — 9A2 > 0 or the conditions |Ay| < ™t and

|9A A3 — 8A3| — 8A% > 0, then |agay — a3| < 72|9A Az — 8A3]. (iii) If Ay, Ay and A3 satisty
the conditions |Ay| > 7/;1 and 2[9A;Az — 8AZ| — 2|Ay|A; — 9A? <0, then

A2 32/9A; A5 — 8A2| — 36|Ag|A; — 81A2 — 4A2
= 288 19A1 A5 — 8AZ[ — 2[Aq|A; —

lasay — a3|
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