T. Panigrahi, G. Murugusundaramoorthy

SECOND HANKEL DETERMINANT FOR A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY SǍLǍGEAN-DIFFERENCE OPERATOR

Abstract

T. Panigrahi, G. Murugusundaramoorthy. Second Hankel determinant for a subclass of analytic functions defined by Sălăgean-difference operator, Mat. Stud. 57 (2022), 147-156.

In the present investigation, inspired by the work on Yamaguchi type class of analytic functions satisfyingthe analytic criteria $\mathfrak{R e}\left\{\frac{f(z)}{z}\right\}>0$, in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<$ $1\}$ and making use of Sǎlǎgean-difference operator, which is a special type of Dunkl operator with Dunkl constant ϑ in Δ, we designate definite new classes of analytic functions $\mathcal{R}_{\lambda}^{\beta}(\psi)$ in Δ. For functionsin this new class, significant coefficient estimates $\left|a_{2}\right|$ and $a_{3} \mid$ are obtained. Moreover, Fekete-Szegő inequalities and second Hankel determinant for the function belonging to this class are derived. By fixing the parameters a number of special cases are developed are new (or generalization) of the results of earlier researchers in this direction.

1. Introduction and motivation. Let \mathcal{A} be the family of functions f analytic in the open unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$ normalized by $f(0)=f^{\prime}(0)-1=0$ and having Taylor-Maclaurin's series of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta) \tag{1}
\end{equation*}
$$

Denote by \mathcal{S}, the class of functions of the form (1) which are univalent in Δ. For given two analytic functions f and g, one will say f is subordinate to g written as $f(z) \prec g(z)$ if there exists an analytic functions $\omega(z)$ satisfying the conditions of Schwarz lemma (i.e. $\omega(0)=0$ and $|\omega(z)|<1)$ such that $f(z)=g(\omega(z))$.
Denote by \mathcal{P} the class of analytic functions $p(z)$ on Δ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{2}
\end{equation*}
$$

satisfying the conditions $p(0)=1$ and $\operatorname{Re} p(z)>0(z \in \Delta)$. Here $p(z)$ is called the Caratheodory function (see [5]).

Let ψ be an analytic function on Δ such that: 1) $\operatorname{Re} \psi(z)>0(z \in \Delta)$; 2) $\psi(0)=1$, $\left.\psi^{\prime}(0)>0 ; 3\right) \psi$ maps Δ onto a domain starlike with respect to 1 and symmetric with respect to the real axis. W. Ma and D. Minda (see [19]) introduced the following two classes of analytic functions

$$
\begin{gather*}
\mathcal{S}^{*}(\psi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \psi(z)(z \in \Delta)\right\}, \tag{3}\\
\mathcal{C}(\psi)=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \psi(z)(z \in \Delta)\right\} .
\end{gather*}
$$

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: analytic function; subordination; Hankel determinant;Sǎlǎgean-difference operator. doi:10.30970/ms.57.2.147-156

The classes $\mathcal{S}^{*}(\psi)$ and $\mathcal{C}(\psi)$ unified various subclasses of starlike and convex functions in Δ. For example, taking $\psi(z)=\psi_{\alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z} \quad(0 \leq \alpha<1)$, the class $\mathcal{S}^{*}(\alpha):=\mathcal{S}^{*}(\psi)$ is the class of starlike functions of order α and the class $\mathcal{C}(\alpha):=\mathcal{C}(\psi)$ is the class of convex functions of order α. The classes $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ and $\mathcal{C}:=\mathcal{C}(0)$ are the well-known classes of starlike and convex functions, respectively. Further if we set $\psi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1, z \in \Delta)$ we get the well know subclasses $\mathcal{S}^{*}[A, B]$ and $\mathcal{C}[A, B]$. Following the definitions of W . Ma and D. Minda starlike and convex functions, various classes of analytic functions defined by means of subordination are established recently (see [1,34]). There has been triggering interest to introduce and study new subclasses of analytic functions based on differential and difference operators in geometric function theory.

To define a new function class we recall the following difference operator. For a function $f \in \mathcal{A}$ and $k \in \mathbb{N}_{0}=\{0,1,2,3, \cdots\}$ we define a linear operator $\mathfrak{D}_{\vartheta}^{k}: \mathcal{A} \longrightarrow \mathcal{A}$ as follows:

$$
\begin{gather*}
\mathfrak{D}_{\vartheta}^{0} f(z)=f(z), \\
\mathfrak{D}_{\vartheta}^{k} f(z)=\mathfrak{D}_{\vartheta}^{1}\left(\mathfrak{D}_{\vartheta}^{k-1} f(z)\right)=z+\sum_{n=2}^{\infty}\left[n+\frac{\vartheta}{2}\left(1+(-1)^{n+1}\right)\right]^{k} a_{n} z^{n} \quad(z \in \Delta) . \tag{4}
\end{gather*}
$$

The operator $\mathfrak{D}_{\vartheta}^{k}$ is known as the Sǎlăgean-difference operator (see $\left.[9,25]\right)$. This operator is a modified Dunkel operator of complex variables (see [4, 8]). Dunkel operator describes a major generalization of partial derivatives and realizes the commutative law in \mathbb{R}^{n}. In geometry, it attains the reflexive relation, which is plotting the space into itself as a set of fixed points. When $\vartheta=0, \mathfrak{D}_{\vartheta}^{k}=\mathfrak{D}_{0}^{k}=\mathfrak{D}^{k}$ is known as the Sălăgean differential operator (see [32]).

Let us give some simple examples of the actions of the introduced operator. For $f(z)=$ $z \cos z=z-\frac{z^{3}}{2}+\frac{z^{5}}{4!}-\cdots$ we have $\mathfrak{D}_{1}^{1} f(z)=z-2 z^{3}+\frac{z^{5}}{4}-\cdots$. For $g(z)=\ln (1+z)=$ $z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots$ we get $\mathfrak{D}_{1}^{1} g(z)=z-z^{2}+\frac{4}{3} z^{3}-z^{4}+\cdots$. For $g(z)=\frac{z}{1-z}=z+z^{2}+z^{3}+\cdots$ one has $([9]) \mathfrak{D}_{1}^{1} g(z)=z+2 z^{2}+4 z^{3}+4 z^{4}+6 z^{5}+6 z^{6}+\cdots$. For $g(z)=\frac{z}{(1-z)^{2}}=z+$ $2 z^{2}+3 z^{3}+\cdots$ we obtain $([9]) \mathfrak{D}_{1}^{1} g(z)=z+4 z^{2}+12 z^{3}+16 z^{4}+30 z^{5}+36 z^{6}+\cdots$ and $\frac{\mathfrak{D}_{\vartheta}^{k} g(z)}{z}=1+2.2^{k} z+3(3+\vartheta)^{k} z^{2}+4.4^{k} z^{3}+\cdots$.

In 1966 K. Yamaguchi [37] defined a class satisfying $\operatorname{Re}(f(z) / z)>0$ and obtained some coefficient estimates. Using of Sǎlăgean-difference operator, we will introduce the following class of functions, defined by subordination.

Definition 1. Let $\psi: \Delta \longrightarrow \mathbb{C}$ be an analytic function such that $\operatorname{Re} \psi(z)>0(z \in \Delta)$, $\psi(0)=1, \psi^{\prime}(0)>0$ and ψ maps Δ onto a domain starlike with respect to 1 and symmetric with respect to the real axis. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R}_{\vartheta}^{k}(\psi)$ if

$$
\begin{equation*}
\frac{\mathfrak{D}_{\vartheta}^{k} f(z)}{z} \prec \psi(z) \quad(z \in \Delta) . \tag{5}
\end{equation*}
$$

Remark 1. Taking $\vartheta=0$ and $k=1$ in the above definition, we obtain the class

$$
\mathcal{R}_{0}^{1}(\psi)=\mathcal{R}(\psi)=\left\{f \in \mathcal{A}: f^{\prime}(z) \prec \psi(z), \quad z \in \Delta\right\} .
$$

Remark 2. If we set $\psi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1, z \in \Delta)$ in (5) we get

$$
\mathcal{R}_{\vartheta}^{k}\left(\frac{1+A z}{1+B z}\right)=\mathcal{R}_{\vartheta}^{k}(A, B)=\left\{f \in \mathcal{A}:\left|\frac{\frac{\mathfrak{P}_{\vartheta}^{k} f(z)}{z}-1}{A-B \frac{\mathfrak{D}_{\vartheta}^{k} f(z)}{z}}\right|<1\right\} .
$$

It may be noted that for $\alpha=0, k=1$ and $\vartheta=0$, the class $\mathcal{R}_{\vartheta}^{k}(\alpha)$ reduces to the class \mathcal{R} of analytic function whose derivative has positive real part in Δ studied in [20].

A lot of works have been done in the direction of finding upper bounds for a_{2}, a_{3} and $\left|a_{3}-\mu a_{2}^{2}\right|$ for the function f in the certain subclasses of \mathcal{A} for some real or complex parameters μ. This work was originated by M. Fekete and G. Szegő [7]. M. Fekete and G. Szegő gave a sharp estimate of non-linear functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for real parameters μ for subclasses of \mathcal{A}. This is known as Fekete-Szegő inequality. Several researchers solved the Fekete-Szegő problem for various subclasses of the class of \mathcal{S} (see [6, 13, 14, 27-29, 33]).

In 1976, J. W. Noonan and D. K. Thomas [26] defined $q^{\text {th }}$ Hankel determinant of function f for $q \geq 1$ and $n \geq 1$ as

$$
H_{q}(n)=\left|\begin{array}{ccc}
a_{n} & a_{n+1} \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} \cdots & a_{n+q} \\
\vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} \cdots & a_{n+2 q-2}
\end{array}\right|,
$$

where $a_{1}=1$. For brief history of Hankel determinant (see [30]). A good amount of literature exist for finding upper bound on $\left|H_{2}(2)\right|$ for various subclasses of \mathcal{S}. A. Janteng, S. A. Halim, M. Darus $[10,11]$ derived the exact bounds for $\left|H_{2}(2)\right|$ for the class of starlike functions $\left(\mathcal{S}^{*}\right)$, the class of convex functions (\mathcal{C}) and the class of functions whose derivatives have positive real parts (\mathcal{R}) in Δ. S. K. Lee, V. Ravichandran, S. Supramaniam [16] investigated $\left|H_{2}(2)\right|$ in the general class $\mathcal{S}^{*}(\psi)$ of starlike functions with respect to a given function ψ. D. V. Krishna, T. Ramreddy [15] generalized the result from [11] giving the sharp bound of $\left|H_{2}(2)\right|$ in the class of starlike and convex functions of α. P. Zaprawa [36] showed that if $f \in \mathrm{~T}$, the class of typically real functions, then $\left|H_{2}(2)\right| \leq 9$. Apart from these, many research all over the globe obtained the upper bounds for various subclasses of univalent analytic functions and their results are available in literature (see [2, 3, 12, 22-24]).

In the present paper, following the technique used by R. J. Libera, E. J. Zlotkiewicz (see $[17,18])$, Fekete-Szegó inequality for the class $\mathcal{R}_{\vartheta}^{k}(\psi)$ is completely settled for real and complex parameters μ. Further, we obtain the upper bounds of $\left|H_{2}(2)\right|$ for the above mentioned class.
2. Preliminaries. We need the following lemmas in order to investigate the main results:

Lemma 1 ([5, 17-19]). If $p \in \mathcal{P}$ is of form (2), then

$$
\begin{gather*}
\left|c_{n}\right| \leq 2 \quad(n \geq 1), \tag{6}\\
\left|c_{2}-\nu c_{1}^{2}\right| \leq 2 \max \{1,|2 \nu-1|\} \quad(\nu \in \mathbb{C}), \tag{7}\\
c_{2}=\frac{1}{2}\left[c_{1}^{2}+\left(4-c_{1}^{2}\right) x\right], \tag{8}\\
c_{3}=\frac{1}{4}\left[c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right], \tag{9}
\end{gather*}
$$

for some complex numbers x, z satisfying $|x| \leq 1$ and $|z| \leq 1$. The estimates in (6) and (7) are sharp for the functions $p(z)=\frac{1+z}{1-z}$ and $p(z)=\frac{1+z^{2}}{1-z^{2}} \quad(z \in \Delta)$.
Lemma 2 ([19]). Let $p \in \mathcal{P}$ be of form (2). Then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq \begin{cases}-4 \nu+2, & \nu \leq 0 \\ 2, & 0 \leq \nu \leq 1 \\ 4 \nu-2, & \nu>1\end{cases}
$$

When $\nu<0$ or $\nu>1$, the equality holds if and only if $p(z)=\frac{1+z}{1-z}$ or one of its rotation. If $0<\nu<1$, then the equality holds if and only if $p(z)=\frac{1+z^{2}}{1-z^{2}}$ or one of its rotation. If $\nu=0$, the equality holds if and only if $p(z)=\left(\frac{1}{2}+\frac{\eta}{2}\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{\eta}{2}\right) \frac{1-z}{1+z}, \quad(0 \leq \eta \leq 1)$ or one of its rotation. If $\nu=1$, the equality holds if and only if p is the reciprocal of one of the functions such that the equality holds in the case of $\nu=0$.

Although the above upper bound is sharp, when $0<\nu<1$, it can be improved as follows

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2\left(0<\nu \leq \frac{1}{2}\right), \quad\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2\left(\frac{1}{2}<\nu \leq 1\right) .
$$

3. Coefficient estimate results.

Theorem 1. Let $\psi(z)=1+\mathrm{A}_{1} z+\mathrm{A}_{2} z^{2}+\cdots$ with $\mathrm{A}_{1}>0$ and $\mathrm{A}_{n} \in \mathbb{R}$. If the function $f \in \mathcal{A}$ of form (1) belongs to the class $\mathcal{R}_{\vartheta}^{k}(\psi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\mathrm{A}_{1}}{2^{k}}, \tag{10}\\
\left|a_{3}\right| \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}} \max \left\{1,\left|\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right|\right\}, \tag{11}\\
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}} \max \left\{1,\left|\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}-\frac{(3+\vartheta)^{k}}{2^{2 k}} \mu \mathrm{~A}_{1}\right|\right\}, \mu \in \mathbb{C} . \tag{12}
\end{gather*}
$$

Proof. Let the function $f \in \mathcal{A}$ be in the class $\mathcal{R}_{\vartheta}^{k}(\psi)$. Hence by Definition 1 there exists an analytic function w with $w(0)=0$ and $|w(z)|<1$ in Δ such that

$$
\begin{equation*}
\frac{\mathfrak{D}_{\vartheta}^{k} f(z)}{z}=\psi(w(z)) \quad(z \in \Delta) \tag{13}
\end{equation*}
$$

Define the function $p(z)$ given by

$$
\begin{equation*}
p(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots . \tag{14}
\end{equation*}
$$

Clearly $p \in \mathcal{P}$. From (14) it follows that

$$
\begin{equation*}
w(z)=\frac{p(z)+1}{p(z)-1}=\frac{c_{1}}{2} z+\left(\frac{c_{2}}{2}-\frac{c_{1}^{2}}{4}\right) z^{2}+\left(\frac{c_{3}}{2}-\frac{c_{1} c_{2}}{2}+\frac{c_{1}^{2}}{8}\right) z^{3}+\cdots . \tag{15}
\end{equation*}
$$

Now

$$
\begin{gather*}
\psi[w(z)]=1+\frac{\mathrm{A}_{1} c_{1}}{2} z+\frac{1}{2}\left[\mathrm{~A}_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\mathrm{A}_{2} c_{1}^{2}}{2}\right] z^{2}+ \\
+\frac{1}{2}\left[\mathrm{~A}_{1}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right)+\mathrm{A}_{2}\left(c_{1} c_{2}-\frac{c_{1}^{3}}{2}\right)+\frac{\mathrm{A}_{3} c_{1}^{3}}{4}\right] z^{3}+\cdots . \tag{16}
\end{gather*}
$$

From (2) we have

$$
\begin{equation*}
\frac{\mathfrak{D}_{\vartheta}^{k} f(z)}{z}=1+2^{k} a_{2} z+(3+\vartheta)^{k} a_{3} z^{2}+4^{k} a_{4} z^{3}+\cdots . \tag{17}
\end{equation*}
$$

Using (16) and (17) in (13) and equating the coefficients of z, z^{2} and z^{3} on both sides we get

$$
\begin{gather*}
a_{2}=\frac{\mathrm{A}_{1} c_{1}}{2^{k+1}}, \quad a_{3}=\frac{1}{2(3+\vartheta)^{k}}\left[\mathrm{~A}_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\mathrm{A}_{2} c_{1}^{2}}{2}\right], \\
a_{4}=\frac{1}{2^{2 k+1}}\left[\mathrm{~A}_{1}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right)+\mathrm{A}_{2}\left(c_{1} c_{2}-\frac{c_{1}^{3}}{2}\right)+\frac{\mathrm{A}_{3} c_{1}^{3}}{4}\right] . \tag{18}
\end{gather*}
$$

By applying Lemma1, we get $\left|a_{2}\right| \leq \frac{\mathrm{A}_{1}}{2^{k}}$,

$$
\left|a_{3}\right|=\frac{1}{2(3+\vartheta)^{k}}\left|\mathrm{~A}_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{\mathrm{A}_{2} c_{1}^{2}}{2}\right| \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}} \max \left\{1,\left|\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right|\right\} .
$$

Therefore,

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{\mathrm{A}_{1}}{2(3+\vartheta)^{k}}\left|c_{2}-\nu c_{1}^{2}\right| \tag{19}
\end{equation*}
$$

where $\nu=\frac{1}{2}\left[1-\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}+\frac{(3+\vartheta)^{k}}{2^{2 k}} \mu \mathrm{~A}_{1}\right]$.
By application of (7) of Lemma 1 we obtain the desire estimate (12).
Corollary 1. If $f(z)$ given by (1) belongs to the class $\mathcal{R}_{\vartheta}^{k}(A, B)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{A-B}{(3+\vartheta)^{k}} \max \left\{1,\left|B+\frac{(3+\vartheta)^{k}}{2^{2 k}} \mu(A-B)\right|\right\} .
$$

Proof. For the function $\psi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)$ we have $\psi(z)=1+(A-B) z-$ $B(A-B) z^{2}+\cdots$. Taking $\mathrm{A}_{1}=(A-B)$ and $\mathrm{A}_{2}=-B(A-B)$ in Theorem 1 we get the desire result.

Setting $A=1-2 \alpha \quad(0 \leq \alpha<1)$ and $B=-1$ in Theorem 1 we get the result for the class $\mathcal{R}_{\vartheta}^{k}(\alpha)$ as follows:

Corollary 2. Let $f(z) \in \mathcal{R}_{\vartheta}^{k}(\alpha)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\alpha)}{(3+\vartheta)^{k}} \max \left\{1,\left|1-\frac{(3+\vartheta)^{k}}{2^{2 k-1}} \mu(1-\alpha)\right|\right\} .
$$

Remark 3. Fixing $\vartheta=0$ in Theorem 1, we get the upper bound for the function belonging to the subclass of \mathcal{A} associated with the Sǎlăgean differential operator given by

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\mathrm{A}_{1}}{3^{k}} \max \left\{1,\left|\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}-\frac{3^{k}}{2^{2 k}} \mu \mathrm{~A}_{1}\right|\right\} .
$$

The bounds of $\left|H_{2}(1)\right|$ for $\mu=1$ follows from the Theorem 1 as follows:
Corollary 3. If the function f given by (1) is in the class $\mathcal{R}_{\vartheta}^{k}(\psi)$, then

$$
\left|H_{2}(1)\right|=\left|a_{3}-a_{2}^{2}\right| \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}} \max \left\{1,\left|\frac{\mathrm{~A}_{2}}{\mathrm{~A}_{1}}-\frac{(3+\vartheta)^{k}}{2^{2 k}} \mathrm{~A}_{1}\right|\right\} .
$$

Theorem 2. Let $\mu \in \mathbb{R}$. If the function f given by (1) belongs to the class $\mathcal{R}_{\vartheta}^{k}(\psi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\mathrm{A}_{1}}{2(3+\vartheta)^{k}}\left(\frac{2 \mathrm{~A}_{2}}{\mathrm{~A}_{1}}-\frac{(3+\vartheta)^{k}}{2^{2 k-1}} \mu \mathrm{~A}_{1}\right), & \mu \leq \delta_{1} \\ \frac{\mathrm{~A}_{1}}{(3+\vartheta)^{k}}, & \delta_{1} \leq \mu \leq \delta_{2} \\ \frac{\mathrm{~A}_{1}}{2(3+\vartheta)^{k}}\left(\frac{(3+\vartheta)^{k}}{2^{k-1}} \mu \mathrm{~A}_{1}-\frac{2 \mathrm{~A}_{2}}{\mathrm{~A}_{1}}\right), & \mu \geq \delta_{2}\end{cases}
$$

Furthermore, for $\delta_{1}<\mu \leq \delta_{1}+k$,

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\delta_{1}\right)\left|a_{2}^{2}\right| \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}},
$$

and for $\delta_{1}+k<\mu<\delta_{1}+2 k$,

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\delta_{1}+2 k-\mu\right)\left|a_{2}\right|^{2} \leq \frac{\mathrm{A}_{1}}{(3+\vartheta)^{k}}
$$

where $\delta_{1}=\frac{2^{2 k}}{(3+\vartheta)^{k}}\left(\frac{\mathrm{~A}_{2}-\mathrm{A}_{1}}{\mathrm{~A}_{1}^{2}}\right), \quad \delta_{2}=\frac{2^{2 k}}{(3+\vartheta)^{k}} \frac{\mathrm{~A}_{1}+\mathrm{A}_{2}}{\mathrm{~A}_{1}^{2}}, \quad k=\frac{2^{2 k}}{(3+\vartheta)^{k} \mathrm{~A}_{1}}$. The obtained inequalies is sharp.

Proof. From (19), we have $\left|a_{3}-\mu a_{2}^{2}\right|=\frac{\mathrm{A}_{1}}{2(3+\vartheta)^{k}}\left|c_{2}-\nu c_{1}^{2}\right|$. The result follows by application of Lemma 1 in (19). This completes the proof of Theorem 2. To show that the bounds are sharp, we define the functions the functions F_{η} and $G_{\eta}(0 \leq \eta \leq 1)$, respectively, with $F_{\eta}(0)=0=F_{\eta}^{\prime}(0)-1$ and $G_{\eta}(0)=0=G_{\eta}^{\prime}(0)-1$ by

$$
\frac{\mathfrak{D}_{\vartheta}^{k} F_{\eta}(z)}{z}=\psi\left(\frac{z(z+\eta)}{1+\eta z}\right) \quad \text { and } \quad \frac{\mathfrak{D}_{\vartheta}^{k} G_{\eta}(z)}{z}=\psi\left(-\frac{z(z+\eta)}{1+\eta z}\right), \text { respectively. }
$$

Clearly the functions $K_{\psi_{n}}=\psi\left(z^{n-1}\right), F_{\eta}, G_{\eta} \in \mathcal{R}_{\vartheta}^{k}(\psi)$. Also we write $K_{\psi}:=K_{\psi_{2}}$.
If $\mu<\delta_{1}$ or $\mu>\delta_{2}$, then the equality holds if and only if f is K_{ψ} or one of its rotations. When $\delta_{1}<\mu<\delta_{2}$, then the equality holds if and only if f is $K_{\psi_{3}}$ or one of its rotations. If $\mu=\delta_{1}$ then the equality holds if and only if f is F_{η} or one of its rotations. If $\mu=\delta_{2}$ then the equality holds if and only if f is G_{η} or one of its rotations.

In the following theorem, we obtain the upper bound of the second Hankel determinant $\left|H_{2}(2)\right|$ for $f \in \mathcal{R}_{\vartheta}^{k}(\psi)$.

Theorem 3. Let $k \in \mathbb{N}_{0}, \quad \vartheta \in \mathbb{R}$. Suppose that $f \in \mathcal{R}_{\vartheta}^{k}(\psi)$.
(i) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the inequalities

$$
\left.2\left((3+\vartheta)^{k}-2^{3 k}\right)\left|\mathrm{A}_{2}\right|+(3+\vartheta)^{k}-2^{k+1}\right) \mathrm{A}_{1} \leq 0,\left|(3+\vartheta)^{2 k} \mathrm{~A}_{1} \mathrm{~A}_{3}-2^{3 k} \mathrm{~A}_{2}^{2}\right|-2^{3 k} \mathrm{~A}_{1}^{2} \leq 0
$$

then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\mathrm{A}_{1}^{2}}{(3+\vartheta)^{2 k}}$.
(ii) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the conditions

$$
\begin{gathered}
2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right|+\left((3+\vartheta)^{2 k}-2^{3 k+1}\right) \mathrm{A}_{1} \geq 0 \\
2\left|(3+\vartheta)^{2 k} \mathrm{~A}_{1} \mathrm{~A}_{3}-2^{3 k} \mathrm{~A}_{2}^{2}\right|-2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right| \mathrm{A}_{1}-(3+\vartheta)^{2 k} \mathrm{~A}_{1}^{2} \geq 0
\end{gathered}
$$

or the conditions

$$
\begin{gathered}
2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right|+\left((3+\vartheta)^{2 k}-2^{3 k+1}\right) \mathrm{A}_{1} \leq 0 \\
\left|(3+\vartheta)^{2 k} \mathrm{~A}_{1} \mathrm{~A}_{3}-2^{3 k} \mathrm{~A}_{2}^{2}\right|-2^{3 k} \mathrm{~A}_{1}^{2} \geq 0
\end{gathered}
$$

then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{2^{3 k}(3+k)^{2 k}}\left|(3+\vartheta)^{2 k} \mathrm{~A}_{1} \mathrm{~A}_{3}-2^{3 k} \mathrm{~A}_{2}^{2}\right|$.
(iii) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the conditions

$$
\begin{gathered}
2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right|+\left((3+\vartheta)^{2 k}-2^{3 k+1}\right) \mathrm{A}_{1}>0 \\
2\left|(3+\vartheta)^{2 k} \mathrm{~A}_{1} \mathrm{~A}_{3}-2^{3 k} \mathrm{~A}_{2}^{2}\right|-2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right| \mathrm{A}_{1}-(3+\vartheta)^{2 k} \mathrm{~A}_{1}^{2} \leq 0
\end{gathered}
$$

then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\mathrm{A}_{1}^{2}}{2^{3 k+2}(3+\vartheta)^{2 k}} \times \begin{cases}R, & Q \leq 0, P \leq-\frac{Q}{4} \\ 16 P+4 Q+R, \\ \frac{4 P R-Q^{2}}{4 P} & Q \geq 0, P \geq-\frac{Q}{8} ; \quad Q \leq 0, \quad P \geq-\frac{Q}{4} \\ & Q>0, P \leq-\frac{Q}{8}\end{cases}
$$

where

$$
\begin{gathered}
P=\left|(3+\vartheta)^{2 k} \mathrm{~A}_{3}-2^{3 k} \frac{\mathrm{~A}_{2}^{2}}{\mathrm{~A}_{1}}\right| c^{4}-2\left|(3+\vartheta)^{2 k}-2^{3 k}\right|\left|\mathrm{A}_{2}\right|-\left[(3+\vartheta)^{2 k}-2^{3 k}\right] \mathrm{A}_{1} \\
Q=4\left\{2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right|+\left[(3+\vartheta)^{2 k}-\left(2^{3 k+1}\right) \mathrm{A}_{1}\right]\right\}, \quad R=162^{3 k} \mathrm{~A}_{1}
\end{gathered}
$$

Proof. Substituting the values of a_{2}, a_{3} and a_{4} from (18) in $\left(a_{2} a_{4}-a_{3}^{2}\right)$ we have

$$
\begin{equation*}
a_{2} a_{4}-a_{3}^{2}=M\left[\alpha_{1} c_{1}^{4}+\alpha_{2} c_{1}^{2} c_{2}+\alpha_{3} c_{1} c_{3}+\alpha_{4} c_{2}^{2}\right] \tag{20}
\end{equation*}
$$

where $M=\frac{\mathrm{A}_{1}}{2^{3 k+4}(3+\vartheta)^{2 k}}, \quad \alpha_{1}=\left((3+\vartheta)^{2 k}-2^{3 k}\right)\left(\mathrm{A}_{1}-2 \mathrm{~A}_{2}\right)+(3+\vartheta)^{2 k} \mathrm{~A}_{3}-\frac{\mathrm{A}_{2}^{2}}{\mathrm{~A}_{1}} 2^{3 k}, \alpha_{2}=$ $-4\left((3+\vartheta)^{2 k}-2^{3 k}\right)\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right), \alpha_{3}=4(3+\vartheta)^{2 k} \mathrm{~A}_{1}, \alpha_{4}=-2^{3 k+2} \mathrm{~A}_{1}$. Since the functions $p(z)$ and $p\left(e^{i \theta} z\right) \quad(\theta \in \mathbb{R})$ are in the class \mathcal{P}, without loss of generality, we can assume that $c_{1}=c \in[0,2]$. Substituting the values of c_{2} and c_{3} from (8) and (9) in (20), it follows that

$$
\begin{align*}
\mid a_{2} a_{4}- & a_{3}^{2}|=M|\left(4 \alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right) \frac{c^{4}}{4}+\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \frac{c^{2} x\left(4-c^{2}\right)}{2}+ \\
& \left.+\left(\alpha_{4}\left(4-c^{2}\right)-\alpha_{3} c^{2}\right) \frac{x^{2}\left(4-c^{2}\right)}{4}+\frac{\alpha_{3} c}{2}\left(4-c^{2}\right)\left(1-|x|^{2}\right) z \right\rvert\, \tag{21}
\end{align*}
$$

Now,

$$
\begin{gathered}
4 \alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=4\left[(3+\vartheta)^{2 k} \mathrm{~A}_{3}-2^{3 k} \frac{\mathrm{~A}_{2}^{2}}{\mathrm{~A}_{1}}\right], \quad \alpha_{2}+\alpha_{3}+\alpha_{4}=4\left[(3+\vartheta)^{2 k}-2^{3 k}\right] \mathrm{A}_{2} \\
\alpha_{4}\left(4-c^{2}\right)-\alpha_{3} c^{2}=-2^{3 k+2} \mathrm{~A}_{1}\left(4-c^{2}\right)-4(3+\vartheta)^{2 k} \mathrm{~A}_{1} c^{2} \\
\frac{\alpha_{3} c}{2}\left(4-c^{2}\right)=2(3+\vartheta)^{2 k} \mathrm{~A}_{1} c\left(4-c^{2}\right)
\end{gathered}
$$

Substituting these values in (21) and applying triangle inequality $|x|=\rho$ we obtain

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq M H(c, \rho) \tag{22}
\end{equation*}
$$

where

$$
\begin{gathered}
H(c, \rho)=\left|(3+\vartheta)^{2 k} \mathrm{~A}_{3}-2^{3 k} \frac{\mathrm{~A}_{2}^{2}}{\mathrm{~A}_{1}}\right| c^{4}+2\left|(3+\vartheta)^{2 k}-2^{3 k}\right|\left|\mathrm{A}_{2}\right| c^{2} \rho\left(4-c^{2}\right)+ \\
+2(3+\vartheta)^{2 k} \mathrm{~A}_{1}\left(4-c_{1}^{2}\right)+\rho^{2}\left(4-c^{2}\right) \mathrm{A}_{1}(2-c)\left[2^{3 k+1}-\left((3+\vartheta)^{2 k}-2^{3 k}\right) c\right] \\
\frac{\partial H}{\partial \rho}=2\left|(3+\vartheta)^{2 k}-2^{3 k}\right|\left|\mathrm{A}_{2}\right| c^{2}\left(4-c^{2}\right)+2 \rho\left(4-c^{2}\right) \mathrm{A}_{1}(2-c)\left[2^{3 k+1}-\left((3+\vartheta)^{2 k}-2^{3 k}\right)\right]>0
\end{gathered}
$$

This shows the function $H(c, \rho)$ is an increasing function of ρ on the closed interval $[0,1]$. Hence

$$
\begin{equation*}
\max _{0 \leq \rho \leq 1} H(c, \rho)=H(c, 1)=P t^{2}+Q t+R \tag{23}
\end{equation*}
$$

where

$$
\begin{gathered}
P=\left|(3+\vartheta)^{2 k} \mathrm{~A}_{3}-2^{3 k} \frac{\mathrm{~A}_{2}^{2}}{\mathrm{~A}_{1}}\right| c^{4}-2\left|(3+\vartheta)^{2 k}-2^{3 k}\right|\left|\mathrm{A}_{2}\right|-\left[(3+\vartheta)^{2 k}-2^{3 k}\right] \mathrm{A}_{1}, \\
Q=4\left\{2\left[(3+\vartheta)^{2 k}-2^{3 k}\right]\left|\mathrm{A}_{2}\right|+\left[(3+\vartheta)^{2 k}-\left(2^{3 k+1}\right) \mathrm{A}_{1}\right]\right\}, \quad R=162^{3 k} \mathrm{~A}_{1}, \quad t=c^{2} .
\end{gathered}
$$

Therefore, in view of (22) and (23) we have

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\mathrm{A}_{1}}{2^{3 k+4}(3+\vartheta)^{2 k}} \max _{0 \leq c \leq 2} H(c, 1)=\frac{\mathrm{A}_{1}}{2^{3 k+4}(3+\vartheta)^{2 k}} \max _{0 \leq t \leq 4}\left(P t^{2}+Q t+R\right) \tag{24}
\end{equation*}
$$

Making use of standard result proven for f as defined in (3), that the optimal value of quadratic expression with standard computations as shown in Lee et al., [16](see pp-6, given by equation(16))we have:

$$
\max _{0 \leq t \leq 4}\left(P t^{2}+Q t+R\right)= \begin{cases}R, & Q \leq 0, P \leq-\frac{Q}{4}, \tag{25}\\ 16 P+4 Q+R, & Q \geq 0, P \geq-\frac{Q}{8} ; \quad Q \leq 0, \quad P \geq-\frac{Q}{4}, \\ \frac{4 P R-Q^{2}}{4 P} & Q>0, P \leq-\frac{Q}{8} .\end{cases}
$$

in (24) we obtain the desire estimates.
Fixing $\vartheta=0$ and $k=1$ in Theorem 3, we obtain the upper bound of the second Hankel determinant for the class $\mathcal{R}(\psi)$ as follows:

Corollary 4. Suppose that $f \in \mathcal{R}(\psi)$. (i) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the conditions $\left|\mathrm{A}_{2}\right| \leq \frac{7 \mathrm{~A}_{1}}{2}$ and $\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-8 \mathrm{~A}_{1}^{2} \leq 0$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\mathrm{A}_{1}^{2}}{9}$. (ii) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the conditions $\left|\mathrm{A}_{2}\right| \geq \frac{7 \mathrm{~A}_{1}}{2}$ and $2\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-2\left|\mathrm{~A}_{2}\right| \mathrm{A}_{1}-9 \mathrm{~A}_{1}^{2} \geq 0$ or the conditions $\left|\mathrm{A}_{2}\right| \leq \frac{7 \mathrm{~A}_{1}}{2}$ and $\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-8 \mathrm{~A}_{1}^{2} \geq 0$, then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{72}\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|$. (iii) If $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} satisfy the conditions $\left|\mathrm{A}_{2}\right| \geq \frac{7 \mathrm{~A}_{1}}{2}$ and $2\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-2\left|\mathrm{~A}_{2}\right| \mathrm{A}_{1}-9 \mathrm{~A}_{1}^{2} \leq 0$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{\mathrm{A}_{1}^{2}}{288} \frac{32\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-36\left|\mathrm{~A}_{2}\right| \mathrm{A}_{1}-81 \mathrm{~A}_{1}^{2}-4 \mathrm{~A}_{2}^{2}}{\left|9 \mathrm{~A}_{1} \mathrm{~A}_{3}-8 \mathrm{~A}_{2}^{2}\right|-2\left|\mathrm{~A}_{2}\right| \mathrm{A}_{1}-\mathrm{A}_{1}^{2}}
$$

Acknowledgments. The authors are grateful to the reviewers of this article, that gave valuable comments and advices, in order to revise and improve the content of the paper.

REFERENCES

1. N.M. Alarifi, R.M. Ali, V. Ravichandran, On the second Hankel determinant for the k th root transform of analytic functions, Filomat, 31 (2017), №2, 227-245.
2. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 26 (2013), 103-107.
3. E. Deniz, L. Budak, Second Hankel determinant for certain analytic functions satisfying subordinate condition, Math. Slovaca, 68 (2018), №2, 463-371.
4. C.F. Dunkel, Differential-difference operators associated with reflection groups, Trans. Amer. Math. Soc., 311 (1989), 164-183.
5. P.L. Duren, P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
6. J. Dziok, A general solution of Fekete-Szegố problem, Bound. Value Prob., 1 (2013), №98, 1-13.
7. M. Fekete, G. Szegő, Eine Bermerkung über ungerade schlichte functions, J. London Math. Soc., 8 (1933), 85-89.
8. R.W. Ibrahim, New classes of analytic functions determined by a modified differential-difference operator in complex domain, Karbala Int. J. Modern Sci., 3 (2017), №1, 53-58.
9. R.W. Ibrahim, M. Darus, Subordination inequalities of a new Sălăgean-difference operator, Int. J. Math. Comput. Sci., 14 (2019), №3, 573-582.
10. A. Janteng, S.A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal Pure Appl. Math., 7 (2006), №2, Art. 50, 5 p.
11. A. Janteng, S.A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(2007), №13, 619-625.
12. L. Jena, T. Panigrahi, Upper bounds of second Hankel determinant for generalized Sakaguchi type spirallike functions, Bol. Soc. Paran. Mat., 35 (2017), №3, 263-272.
13. F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
14. W. Koepf, On the Fekete-Szegó problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95.
15. D.V. Krishna, T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J., 5 (2012), №1, 65-76.
16. S.K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinants of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281.
17. R.J. Libera, E.J. Zlotkiewicz, Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), №2, 225-230.
18. R.J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc., 87 (1983), №2, 251-257.
19. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press (1994) 157-169.
20. T.M. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
21. R. Mendiratta, S. Negpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365-386.
22. A.K. Mishra, P. Gochhayat, The Fekete-Szegő for k-uniformily convex functions and for a class defined by the Owa-Srivastava operator, J. Math. Anal. Appl., 347 (2008), 563-572.
23. R.N. Mohapatra, T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komantu integral operator, Rend. Mat. Appl., 41 (2020), №1, 51-58.
24. G. Murugusundaramoorthy, N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1 (2009), №3, 85-89.
25. A. Naik, T. Panigrahi, Upper bound on Hankel determinant for bounded turning function associated with Sălăgean-difference operator, Survey in Math. Appl., 15 (2020), 525-543.
26. J.W. Noonan, D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (1976), №2, 337-346.
27. T. Panigrahi, G. Murugusundarmoorthy, The Fekete-Szegő inequality for subclass of anlaytic functions of complex order, Adv. Studies Contemp. Math., 24 (2014), №1, 67-75.
28. T. Panigrahi, R.K. Raina, Fekete-Szegő coefficient functional for quasi-subordination class, Afr. Mat., DOI: 10.1007/s13370-016-0477-1.
29. T. Panigrah, R.K. Raina, Fekete-Szegő problem for generalized Sakaguchi type functions associated with quasi-subordination, Stud. Univ. Babes-Bolyai Math., 63 (2018), №3, 329-340.
30. Ch. Pommerenke, On the coefficient and Hankel determinants of univalent functions, J. London Math. Soc., 41 (1996), №1, 111-122.
31. R.K. Raina, J. Sokól, Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), №11, 973-978.
32. G.S. Sǎlǎgean, Subclasses of univalent functions, Complex Analysis-Fifth Rommanian-Finish Seminar, Part-I, Bucharest, 1981, Lecture Notes in Math., Springer, Berlin, 1013 (1983), 362-372.
33. H.M. Srivastava, A.K. Mishra, M.K. Das, Fekete-Szegö problem for a sublcass of close-to-convex functions, Complex Var. Theor. Appl., 44 (2001), 145-163.
34. H.M. Srivastava, S. Gaboury, F. Gharim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, RACSAM, DOI: 10.1007/s13398-017-0416-5.
35. J. Sokol, D.K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math., 44 (2018), 83-95.
36. P. Zaprawa, Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., 2016 (2016), Art. ID: 3792367.
37. K. Yamaguchi, On functions satisfying $\operatorname{Re}\{f(z) / z\}>0$, Proc. Amer. Math. Soc., 17 (1966), 588-591.

Institute of Mathematics and Applications
Andharua, Bhubaneswar-751029
Odisha, India
trailokyap6@gmail.com
Vellore Institute of Technology, School of Advanced Sciences
Department of Mathematics
Vellore-632014, Tamilnadu, India
gmsmoorthy@yahoo.com

