@article{Baziv_Hrybel_2021, title={On the algebraic dimension of Riesz spaces}, volume={56}, url={http://www.matstud.org.ua/ojs/index.php/matstud/article/view/230}, DOI={10.30970/ms.56.1.67-71}, abstractNote={<p>We prove that the algebraic dimension of an infinite dimensional $C$-$\sigma$-complete Riesz space (in particular, of a Dedekind $\sigma$-complete and a laterally $\sigma$-complete Riesz space) with the principal projection property which either has a weak order unit or is not purely atomic, is at least continuum. A similar (incomparable to ours) result for complete metric linear spaces is well known.</p>}, number={1}, journal={Matematychni Studii}, author={Baziv, N. M. and Hrybel, O. B.}, year={2021}, month={Oct.}, pages={67-71} }