Optimal recovery of operator sequences

  • V. F. Babenko Mechanics and Mathematics Department, Oles Honchar Dnipro National University Dnipro, Ukraine
  • N. V. Parfinovych Mechanics and Mathematics Department Oles Honchar Dnipro National University Dnipro, Ukraine
  • D. S. Skorokhodov Mechanics and Mathematics Department Oles Honchar Dnipro National University Dnipro, Ukraine https://orcid.org/0000-0001-8494-5885
Keywords: optimal recovery of operators, method of recovery, recovery with non-exact information, sequence spaces

Abstract

In this paper we solve two problems of optimal recovery based on information given with an error. First is the problem of optimal recovery of the class $W^T_q = \{(t_1h_1,t_2h_2,\ldots)\,\colon \,\|h\|_{\ell_q}\le 1\}$, where $1\le q < \infty$ and $t_1\ge t_2\ge \ldots \ge 0$ are given, in the space $\ell_q$. Information available about a sequence $x\in W^T_q$ is provided either (i) by an element $y\in\mathbb{R}^n$, $n\in\mathbb{N}$, whose distance to the first $n$ coordinates $\left(x_1,\ldots,x_n\right)$ of $x$ in the space $\ell_r^n$, $0 < r \le \infty$, does not exceed given $\varepsilon\ge 0$, or (ii) by a sequence $y\in\ell_\infty$ whose distance to $x$ in the space $\ell_r$ does not exceed $\varepsilon$. We show that the optimal method of recovery in this problem is either operator $\Phi^*_m$ with some $m\in\mathbb{Z}_+$ ($m\le n$ in case $y\in\ell^n_r$), where

\smallskip\centerline{$\displaystyle
\Phi^*_m(y) = \Big\{y_1\left(1 - \frac{t_{m+1}^q}{t_{1}^q}\Big),\ldots,y_m\Big(1 - \frac{t_{m+1}^q}{t_{m}^q}\Big),0,\ldots\right\},\quad y\in\mathbb{R}^n\text{ or } y\in\ell_\infty,$}

\smallskip\noi
or convex combination $(1-\lambda) \Phi^*_{m+1} + \lambda\Phi^*_{m}$.

The second one is the problem of optimal recovery of the scalar product operator acting on the Cartesian product $W^{T,S}_{p,q}$ of classes $W^T_p$ and $W^S_q$, where $1 < p,q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and $s_1\ge s_2\ge \ldots \ge 0$ are given. Information available about elements $x\in W^T_p$ and $y\in W^S_q$ is provided by elements $z,w\in \mathbb{R}^n$ such that the distance between vectors $\left(x_1y_1, x_2y_2,\ldots,x_ny_n\right)$ and $\left(z_1w_1,\ldots,z_nw_n\right)$ in the space $\ell_r^n$ does not exceed $\varepsilon$. We show that the optimal method of recovery is delivered either by operator $\Psi^*_m$ with some $m\in\{0,1,\ldots,n\}$, where

\smallskip\centerline{$\displaystyle
\Psi^*_m = \sum_{k=1}^m z_kw_k\Big(1 - \frac{t_{m+1}s_{m+1}}{t_ks_k}\Big),\quad z,w\in\mathbb{R}^n,$}

\smallskip\noi
or by convex combination $(1-\lambda)\Psi^*_{m+1} + \lambda\Psi^*_{m}$.

As an application of our results we consider the problem of optimal recovery of classes in Hilbert spaces by the Fourier coefficients of its elements known with an error measured in the space $\ell_p$ with $p > 2$.

Author Biographies

V. F. Babenko, Mechanics and Mathematics Department, Oles Honchar Dnipro National University Dnipro, Ukraine

Mechanics and Mathematics Department

Oles Honchar Dnipro National University

Dnipro, Ukraine

N. V. Parfinovych, Mechanics and Mathematics Department Oles Honchar Dnipro National University Dnipro, Ukraine

Mechanics and Mathematics Department

Oles Honchar Dnipro National University

Dnipro, Ukraine

D. S. Skorokhodov, Mechanics and Mathematics Department Oles Honchar Dnipro National University Dnipro, Ukraine

Mechanics and Mathematics Department

Oles Honchar Dnipro National University

Dnipro, Ukraine

References

Arestov V.V. Approximation of unbounded operators by bounded ones, and related extremal problems// Russian Math. Surveys. – 1996. – V.51, №6. – P. 1093–1126. https://doi.org/10.1070/ RM1996v051n06ABEH003001.

Babenko V.F. On the best use of linear functional for approximation of bilinear ones// Researches in Mathematics. – Dnepropetrovsk. – 1979. – P. 3–5.

Babenko V.F. Extremal problems of Approximation Theory and asymmetric norms// Diss. Doct. Thesis in Physical and Mathematical Sciences, DSU, – Dnepropetrovsk. – 1987.

Babenko V.F. Approximate computation of scalar products// Ukr. Math. J. – 1988. – V.40. – P. 11–16. – https://doi.org/10.1007/BF01056438.

Babenko V.F., Babenko Yu.V., Parfinovych N.V., Skorokhodov D.S. Optimal recovery of integral operators and its applications// J. Complexity. – 2016. – V.35. – P. 102–123. https://doi.org/10.1016/j.jco.2016.02.004

Babenko V.F., Gunko M.S., Rudenko A.A. On optimal recovery of bilinear functional by linear information// Researches in Mathematics. – Dnipropetrovsk. – 2012. – V.17. – P. 11–17. https://doi.org/10.15421/24122001

Babenko V.F., Gunko M.S., Parfinovych N.V., Optimal recovery of elements of a Hilbert space and their scalar products according to the Fourier coefficients known with errors // Ukr. Math. J. – 2020. – V.72. – P. 853–870. https://doi.org/10.1007/s11253-020-01828-4.

Babenko V.F., Rudenko A.A. Optimal recovery of convolutions and scalar products of functions from various classes// Ukr. Math. J. – 1991. – V.43. – P. 1214–1219. https://doi.org/10.1007/BF01061804.

Babenko V.F., Rudenko A.A. On the optimal renewal of bilinear functionals in linear Normed spaces// Ukr. Math. J. – 1997. – V.49. – P. 925–929. https://doi.org/10.1007/BF02513432.

Magaril-Il’yaev G.G., Osipenko K.Yu. Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error// Sbornik: Mathematics. – 2002. – V.193, №3. – P. 387–407. https://doi.org/10.1070/SM2002v193n03ABEH000637.

Math´e P., Pereverzev S.V. Stable summation of orthogonal series with noisy coefficients// J. Approx. Theory. – 2002. – V.118, №1. – P. 66–80. https://doi.org/10.1006/jath.2002.3710

Melkman A.A., Micchelli C.A. Optimal estimation of linear operators in Hilbert spaces from inaccurate data// SIAM Journal on Numerical Analysis. – 1979. – V.16, №1. – P. 87–105. https://doi.org/ 10.1137/0716007

Micchelli C.A. Optimal estimation of linear operators from inaccurate data: A second look// Numer Algor. – 1993. – V.5. – P. 375–390. https://doi.org/10.1007/BF02109419

Micchelli C.A., Rivlin T.J. A Survey of optimal recovery// In: Micchelli C.A., Rivlin T.J. (eds) Optimal Estimation in Approximation Theory. The IBM Research Symposia Series. Springer, Boston, MA. – 1977. – P. 1–54.

https://doi.org/10.1007/978-1-4684-2388-4_1

Micchelli C.A., Rivlin T.J. Lectures on optimal recovery, In: Turner P.R. (eds) Numerical Analysis Lancaster 1984. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, V.1129, 1985. https://doi.org/10.1007/BFb0075157

Plaskota L. Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996, xii+308 p. https://doi.org/10.1017/CBO9780511600814

Traub J.F.,Wasilkowski G.W.,Wozniakowski H. Information-based complexity, Academic Press, Boston, San Diego and New York, 1988, xiii+523p.

Published
2021-12-26
How to Cite
Babenko, V. F., Parfinovych, N. V., & Skorokhodov, D. S. (2021). Optimal recovery of operator sequences. Matematychni Studii, 56(2), 193-207. https://doi.org/10.30970/ms.56.2.193-207
Section
Articles