Existence of basic solutions of first order linear homogeneous set-valued differential equations
Abstract
The paper presents various derivatives of set-valued mappings,
their main properties and how they are related to each other.
Next, we consider Cauchy problems with linear homogeneous
set-valued differential equations with different types of
derivatives (Hukuhara derivative, PS-derivative and
BG-derivative). It is known that such initial value problems with
PS-derivative and BG-derivative have infinitely many solutions.
Two of these solutions are called basic. These are solutions such
that the diameter function of the solution section is a
monotonically increasing (the first basic solution) or monotonically
decreasing (the second basic solution) function. However, the second
basic solution does not always exist. We provide
conditions for the existence of basic solutions of such initial
value problems. It is shown that their existence depends on the
type of derivative, the matrix of coefficients on the right-hand
and the type of the initial set. Model examples are considered.
References
S.N. Avvakumov, Yu.N. Kiselev, Support functions of some special sets, constructive smoothing procedures, geometric difference, Problems of dynamic control, 1 (2005), 24–110.
S.E. Amrahov, A. Khastan, N. Gasilov, A.G. Fatullayev, Relationship between Bede-Gal differentiable set-valued functions and their associated support functions, Fuzzy Sets Syst., 265 (2016), 57–72. https://doi.org/10.1016/j.fss.2015.12.002.
H.T. Banks, M.Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl., 29 (1970), 246–272.
B. Bede, S.G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets Syst., 147 (2004), 385–403. https://doi.org/10.1016/j.fss.2003.08.004.
R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, New York, 1970.
F.S. de Blasi, On the differentiability of multifunctions, Pac. J. Math., 66 (1976), №1, 67–81.
F.S. de Blasi, F. Iervolino, Equazioni differentiali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital. 2 (1969), №4–5, 491–501.
T.F. Bridgland, Trajectory integrals of set valued functions, Pac. J. Math., 33 (1970), №1, 43–68.
Y. Chalco-Cano, H. Roman-Flores, M.D. Jimenez-Gamero, Generalized derivative and π-derivative for set-valued functions, Inform. Sci., 181 (2011), №11, 2177–2188. https://doi.org/10.1016/j.ins.2011.01.023.
G.E. Forsythe, C.B. Moler, Computer solution of linear algebraic systems, Prentice-Hall, Inc. Englewood Cliffs, New York, 1967.
L.T. Gomes, L. Barros, B. Bede, Fuzzy differential equations in various approaches, SpringerBriefs in Mathematics, Springer, 2015. https://doi.org/10.1007/978-3-319-22575-3.
R.A. Horn, Ch.R. Johnson, Matrix Analysis, Cambridge Scientific Publishers, Cambridge, 2013.
M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe, Funkc. Ekvacioj, Ser. Int., 10 (1967), 205–223.
A. Khastan, R. Rodr´eguez-L´epez, M. Shahidi, New differentiability concepts for set-valued functions and applications to set differential equations, Information Sciences, 575 (2021), 355–378. https://doi.org/10.1016/j.ins.2021.06.014.
A. Khastan, R. Rodr´eguez-L´epez, M. Shahidi, New metric-based derivatives for fuzzy functions and some of their properties, Fuzzy Sets Syst., 436 (2022), 32–54. https://doi.org/10.1016/j.fss.2021.09.007.
T.A. Komleva, L.I. Plotnikova, A.V. Plotnikov, A multivalued discrete system and its properties, Ukr. Math. J., 70 (2019), №11, 1750–1757. https://doi.org/10.1007/s11253-019-01612-z.
T.A. Komleva, A.V. Plotnikov, N.V. Skripnik, Differential equations with set-valued solutions, Ukr. Math. J., 60 (2008), №10, 1540–1556. https://doi.org/10.1007/s11253-009-0150-z.
T.A. Komleva, L.I. Plotnikova, N.V. Skripnik, A.V. Plotnikov, Some remarks on linear set-valued differential equations, Stud. Univ. Babes-Bolyai Math., 65 (2020), №3, 415–431. https://doi.org/10.24193/subbmath.2020.3.09
T.A. Komleva, A.V. Plotnikov, L.I. Plotnikova, N.V. Skripnik, Conditions for the existence of basic solutions of linear multivalued differential equations, Ukr. Math. J., 73 (2021), №5, 758–783. https://doi.org/10.1007/s11253-021-01958-3.
V. Lakshmikantham, T. Granna Bhaskar, J. Vasundhara Devi, Theory of set differential equations in metric spaces, Cambridge Scientific Publishers, Cambridge, 2006.
V. Lakshmikantham, R.N. Mohapatra, Theory of fuzzy differential equations and inclusions, Taylor & Francis, London, 2003. https://doi.org/10.1201/9780203011386.
V. Lakshmikantham, J.J. Nieto, Differential equations in metric spaces: an introduction and an application to fuzzy differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 10 (2003), 991–1000.
A. Lasota, A. Strauss, Asymptotic behavior for differential equations which cannot be locally linearized, J. Differ. Equations, 10 (1971), 152–172.
V. Lupulescu, D. O’Regan, A new derivative concept for set-valued and fuzzy-valued functions. Differential and integral calculus in quasilinear metric spaces, Fuzzy Sets Syst., 404, (2021), 75–110. https://doi.org/10.1016/j.fss.2020.04.002.
M.T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 218 (2012), 9427–9437. https://doi.org/10.1016/j.amc.2012.03.027.
M.T. Malinowski, On set differential equations in Banach spaces — a second type Hukuhara differentiability approach, Appl. Math. Comput., 219 (2012), 289–305. https://doi.org/10.1016/j.amc.2012.06.019.
M. Martelli, A. Vignoli, On differentiability of multi-valued maps, Boll. Unione Mat. Ital., 10 (1974), №4, 701–712.
M. Muslikh, A. Kilicman, S.H. Sapar, N. Bachoklati, The metric derivative of set-valued functions, Advances in Pure and Applied Mathematics, 10 (2019), №3, 263–272. https://doi.org/10.1515/apam-2018-0028.
N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko, N.V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities, de Gruyter Stud. Math. 40, Berlin-Boston, Walter De Gruyter GmbH& Co, 2011. https://doi.org/10.1515/9783110218176.
A.V. Plotnikov, Differentiation of multivalued mappings. T-derivative, Ukr. Math. J., 52 (2000), №8, 1282–1291. https://doi.org/10.1023/A:1010361206391.
A.V. Plotnikov, N.V. Skripnik, Differential equations with ”clear” and fuzzy multivalued right-hand side. Asymptotics methods, AstroPrint, Odessa, 2009.
A.V. Plotnikov, N.V. Skripnik, Set-valued differential equations with generalized derivative, J. Adv. Res. Pure Math., 3 (2011), №1, 144–160. https://doi.org/10.5373/JARPM.475.062210.
A.V. Plotnikov, N.V. Skripnik, Existence and uniqueness theorems for generalized set differential equations, Int. J. Control Sc. Eng., 2 (2012), №1, 1–6. https://doi.org/10.5923/j.control.20120201.01.
A.V. Plotnikov, N.V. Skripnik, An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 20 (2013), №4, 433–445.
A.V. Plotnikov, N.V. Skripnik, Conditions for the existence of local solutions of set-valued differential equations with generalized derivative, Ukr. Math. J., 65 (2014), №10, 1498–1513. https://doi.org/10.1007/s11253-014-0875-1.
V.A. Plotnikov, A.V. Plotnikov, A.N. Vityuk, Differential equations with a multivalued right-hand side. Asymptotic methods, AstroPrint, Odessa, 1999.
N.V. Plotnikova, Systems of linear differential equations with π-derivative and linear differential inclusions, Sb. Math., 196 (2005), 1677–1691. https://doi.org/10.4213/sm1396.
E.S. Polovinkin, Multivalued analysis and differential inclusions, FIZMATLIT, Moscow, 2014.
L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311–1328. https://doi.org/10.1016/j.na.2008.12.005.
L. Stefanini, B. Bede, A new gh-difference for multi-dimensional convex sets and convex fuzzy sets, Axioms, 8 (2) (2019), 1–30. https://doi.org/10.3390/axioms8020048.
A. Tolstonogov, Differential inclusions in a Banach space, Kluwer Academic Publishers, Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9490-5.
Yu.N. Tyurin, Mathematical statement of the simplified model of industrial planning, Econ. math. meth., 3 (1965), 391–409.
H. Vu, L.S. Dong, Initial value problem for second-order random fuzzy differential equations, Adv. Difference Equ., 2015: 373 (2015), 23 p. https://doi.org/10.1186/s13662-015-0710-5.
H. Vu, N. Van Hoa, On impulsive fuzzy functional differential equations, Iran. J. Fuzzy Syst., 13 (2016), №4, 79–94. https://doi.org/10.22111/IJFS.2016.2597.
Copyright (c) 2024 A. V. Plotnikov, T. A. Komleva, N. V. Skripnik
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.