Some results on 1/n-homogeneity

  • A. Santiago-Santos Instituto de Fisica y Matematicas Universidad Tecnologica de la Mixteca Localidad Acatlima, Huajuapan de Leon, Oaxaca, Mexico
  • N. T. Tapia-Bonilla Facultad de Sistemas Biologicos e Innovacion Tecnologica Universidad Autonoma Benito Juarez de Oaxaca Oaxaca de Juarez, Mexico
Keywords: continuum, 1n-homogeneous, degree of homogeneity, suspension, locally connected

Abstract

Given a positive integer n, a non-empty topological space is said to be 1n-homogeneous provided there are exactly n orbits for the action of the group of homeomorphisms of the space onto itself. Now, for a non-empty topological space X, the cone of X, Cone(X), is the quotient space that is obtained by identifying all the points (x,1) in X×[0,1] to a single point. The suspension of XSus(X), is the quotient space that is obtained by identifying all the points (x,1) in X×[1,1] to a single point, and all the points (x,1) to another point. The quotient space ZX, is the space that is obtained by identifying all the points (x,1) and all the points (x,1) in X×[1,1] to one point. In this paper we determine general properties of the quotient spaces ZX and we investigate 1n-homogeneity on the quotient spaces ZX, Sus(ZX) and Cone(ZX), among certain classes of compact metric spaces. In particular, we obtain the degree of homogeneity of the harmonic  sequence, the n-rose finite graph and the space X which is the union of a sequence {Cn}n=1 of circles in the plane joined by a point and converging to a limit circle C0.

Author Biographies

A. Santiago-Santos, Instituto de Fisica y Matematicas Universidad Tecnologica de la Mixteca Localidad Acatlima, Huajuapan de Leon, Oaxaca, Mexico

Instituto de Fisica y Matematicas Universidad Tecnologica de la Mixteca Localidad Acatlima, Huajuapan de Leon, Oaxaca, Mexico

N. T. Tapia-Bonilla, Facultad de Sistemas Biologicos e Innovacion Tecnologica Universidad Autonoma Benito Juarez de Oaxaca Oaxaca de Juarez, Mexico

Facultad de Sistemas Biologicos e Innovacion Tecnologica Universidad Autonoma Benito Juarez de Oaxaca Oaxaca de Juarez, Mexico

References

G. Acosta, L.C. Hoehn, Y. Pacheco Ju´arez, Homogeneity degree of fans, Topology Appl., 231 (2017), 320–328. https://doi.org/10.1016/j.topol.2017.09.002

R.D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math., 67 (1958), 313–324. https://doi.org/10.2307/1970007

K. Borsuk, Theory of Retracts, Monografie Mat., V.44, Polish Scientific Publishers, Warszawa, Poland, 1967.

K. Borsuk, J.W. Jaworowski, On labile and stable points, Fund. Math., 39 (1952), 159–175.

T. Ganea, Homotopically stable points, Rev. Math. Pures Appl., 5 (1960), 315–317. (in Russian)

Shijie Gu, Degree of homogeneity on suspensions of manifolds, Topology Appl., 238 (2018), 20–23. https://doi.org/10.1016/j.topol.2018.02.002

J.G. Hocking, G.S. Young, Topology, Dover Publications, New York, 1988.

W. Hurewicz, H. Wallman, Dimension theory, Princeton University Press, Princeton, N. J., 1969.

A. Illanes, S.B. Nadler, Jr., Hyperspaces: fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics Series, Vol. 216, Marcel Dekker, Inc., New York and Basel, 1999.

A. Illanes, V. Mart´inez-de-la-Vega, Models and homogeneity degree of hyperspaces of a simple closed curve, Rocky Mountain J. Math., 54 (2024), №3, 765–785. https://doi.org/10.1216/rmj.2024.54.765

W. Kuperberg, On stable points in finite dimensional locally compact spaces, Thesis in the archive of the Warsaw University, 1963. (in Polish)

W. Kuperberg, Homotopically labile points of locally compact metric spaces, Fund. Math., 73 (1971), 133–136.

K. Kuratowski, Topology, V.II, Academic Press, New York, 1968.

M. de J. Lopez Toriz, P. Pellicer-Covarrubias, A. Santiago-Santos, frac12-homogeneous suspensions, Topology Appl., 157 (2010), 482–493. doi:10.1016/j.topol.2009.10.007

M. de J. Lopez, P. Pellicer-Covarrubias, A. Santiago-Santos, Suspensiones frac12-homogeneas, Chapter 9 in Topologia y sus Aplicaciones, (2013) 211–227. (in Spanish)

F. Leon Jones, Historia y desarrollo de la teoria de los continuos indecomponibles, Aportaciones Matematicas: Investigacion, 27, Sociedad Matematica Mexicana, 2004. (in Spanish)

W. Lewis, Continuous collections of hereditarily indecomposable continua, Topology Appl., 74 (1996), 169–176. https://doi.org/10.1016/S0166-8641(96)00068-5

S. Macias, Topics on continua, 2nd edition, Springer, 2018.

J. van Mill, Infinite-dimensional topology, Prerequisites and introduction, North-Holland, Amsterdam, 1989.

D. Michalik, Homogeneity degree of cones, Topology Appl., 232 (2017), 183–188. doi: 10.1016/j.topol.2017.10.010

D. Michalik, Suspensions of locally connected curves: homogeneity degree and uniqueness, Topology Proceedings, 54 (2019), 69–79.

S.B. Nadler, Jr., Continuum Theory: An Introduction, Monographs and Textbooks in Pure and Applied Mathematics Series, V.158, Marcel Dekker, Inc., New York, Basel and Hong Kong, 1992.

S.B. Nadler, Jr., P. Pellicer-Covarrubias, Hyperspaces with exactly two orbits, Glasnik Mat., 41 (2006), №1, 141–157. doi: 10.3336/gm.41.1.12

S.B. Nadler, Jr., P. Pellicer-Covarrubias, Cones that are frac12-Homogeneous, Houston J. Math., 33 (2007), №1, 229–247.

S.B. Nadler, Jr., P. Pellicer-Covarrubias e I. Puga, frac12-Homogeneous continua with cut points, Topology Appl., 154 (2007), 2154–2166. https://doi.org/10.1016/j.topol.2006.01.018

P. Pellicer-Covarrubias, A. Santiago-Santos, Degree of homogeneity on cones, Topology Appl., 175 (2014), 49–64. DOI: 10.1016/j.topol.2014.07.002

P. Pellicer-Covarrubias, R. Pichardo-Mendoza, A. Santiago-Santos, frac12-homogeneity of nth suspensions, Topology Appl., 161 (2014), 58–72. https://doi.org/10.1016/j.topol.2013.09.007

A. Santiago-Santos, Degree of homogeneity on suspensions, Topology Appl., 158 (2011), №16, 2125–2139. https://doi.org/10.1016/j.topol.2011.06.056

A. Santiago-Santos, N. Tapia-Bonilla, frac1n-Homogeneity of the 2-nd cones, Topology Appl., 234 (2018), 130–154. https://doi.org/10.1016/j.topol.2017.11.033

A. Santiago-Santos, N.T. Tapia-Bonilla, Topological properties on n-fold pseudo-hyperspace suspension of a continuum, Topology Appl., 270 (2020), 106956. https://doi.org/10.1016/j.topol.2019.106956

G. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., V.28, Amer. Math. Soc., Providence, R. I., 1942.

Published
2025-06-24
How to Cite
Santiago-Santos, A., & Tapia-Bonilla, N. T. (2025). Some results on 1/n-homogeneity. Matematychni Studii, 63(2), 181-198. https://doi.org/10.30970/ms.63.2.181-198
Section
Articles