Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials
Abstract
This paper investigates the structure and properties of block-symmetric and block-super\-symmetric polynomials in Banach spaces. The study extends classical symmetric polynomial results to infinite-dimensional settings, particularly in sequence spaces such as ℓp(Cs), 1≤p<∞ and spaces of two-sided absolutely summing series of vectors in Cs for some positive integer s>1. In this paper, we derive analogs of the Waring-Girard formulas for block-symmetric and block-supersymmetric polynomials and explore their combinatorial applications.
References
A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of ellp-spaces, Axioms, 11 (2022), 41. https://doi.org/10.3390/axioms11020041
I. Chernega, A. Zagorodnyuk, Supersymmetric polynomials and a ring of multisets of a Banach algebra, Axioms, 11 (2022), 511. https://doi.org/10.3390/axioms11100511
I. Chernega, P. Galindo, A. Zagorodnyuk, On the spectrum of the algebra of bounded-type symmetric analytic functions on ell1, Math. Nachr., 297 (2025), 3835—3846. https://doi.org/10.1002/mana.202300415
I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), 125–142. https://doi.org/10.1017/S0013091509001655
I. Chernega, M. Martsinkiv, T. Vasylyshyn, A. Zagorodnyuk, Applications of supersymmetric polynomials in statistical quantum physics, Quantum Rep., 5 (2023), 683–697. https://doi.org/10.3390/quantum5040043
Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of multisets and integer multinumbers, Mathematics, 10 (2022), 778. https://doi.org/10.3390/math10050778
M. Gonzalez, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement-invariant function spaces, J. Lond. Math. Soc., 59 (1999), 681–697. https://doi.org/10.1112/S0024610799007164
O.V. Handera-Kalynovska, V.V. Kravtsiv, The Waring-Girard formulas for symmetric polynomials on spaces ellp, Carpathian Math. Publ., 16 (2024), №2, 407–413. https://doi:10.15330/cmp.16.2.407-413
F. Jawad, A. Zagorodnyuk, Supersymmetric polynomials on the space of absolutely convergent series, Symmetry, 11 (2019), 1111. https://doi.org/10.3390/sym11091111.
V. Kravtsiv, Analogues of the Newton formulas for the block-symmetric polynomials, Carpathian Math. Publ., 12 (2020), 17–22. https://doi.org/10.15330/cmp.12.1.17-22
V. Kravtsiv, Block-supersymmetric polynomials on spaces of absolutely convergent series, Symmetry, 16 (2024), 197. https://doi.org/10.3390/sym16020179
V. Kravtsiv, M. Martsinkiv, A. Yaselskyi, Analogues of Waring-Girard formulas for the block-symmetric polynomials on the space ell1(mathbbC2) and ellp(mathbbC2), Visnyk Lviv Univ., Ser. Mech.-Math., 96 (2024), 61–70. http://dx.doi.org/10.30970/vmm.2024.96.061-070
V. Kravtsiv, The analogue of Newton’s formula for block-symmetric polynomials, Int. J. Math. Anal., 10 (2016), №7, 323–327. https://doi.org/10.12988/ijma.2016.617
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on ellp(mathbbCn), J. Funct. Spaces, 2017, 4947925. https://doi.org/10.1155/2017/4947925
V. Kravtsiv, D. Vitrykus, Generating elements of the algebra of block-symmetric polynomials on the product of Banach spaces mathbbCs, AIP Conf. Proc., 2483 (2022), 030010. https://doi.org/10.1063/5.0115680
V.V. Kravtsiv, A.V. Zagorodnyuk, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci., 246 (2020), №2, 245–255. https://doi.org/10.1007/s10958-020-04734-z
V.V. Kravtsiv, A.V. Zagorodnyuk, Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud., 58 (2022), 69–81. https://doi.org/10.30970/ms.58.1.69-81
I.G. Macdonald, Symmetric functions and orthogonal polynomials, University Lecture Series, V.12, AMS: Providence, RI, 1997.
P.A. MacMahon, Combinatory analysis, Volume I, University Press, Cambridge, 1915.
A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR-Sb., 21 (1973), 255–277. https://doi.org/10.1070/SM1973v021n02ABEH002016
M. Rosas, MacMahon symmetric functions, the partition lattice, and Young subgroups, J. Combin. Theory Ser. A, 96 (2001), 326–340. https://doi.org/10.1006/jcta.2001.3186
T.V. Vasylyshyn, Algebras of symmetric analytic functions on cartesian powers of Lebesgue integrable in a power pin[1,infty) functions, Carpathian Math. Publ., 13 (2021), №2, 340—351. https://doi:10.15330/cmp.13.2.340-351
T. Vasylyshyn, Symmetric functions on spaces ellp(mathbbRn) and ellp(mathbbCn), Carpathian Math. Publ., 12 (2020), №1, 5–15. https://doi:10.15330/cmp.12.1.5-16
H. Weyl, The classical groups: their invariants and representations, Princeton University Press, Princeton, New Jersey, 1973.
Copyright (c) 2025 V. V. Kravtsiv, P. Y. Dolyshnjak, R. Y. Stakhiv

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.