On approximation of some Lauricella-Saran's hypergeometric functions FM and their ratios by branched continued fractions
Abstract
The paper considers the problem of approximating Lauricella-Saran's hypergeometric functions FM(a1,a2,b1,b2;a1,c2;z1,z2,z3) by rational functions, which are approximants of branched continued fraction expansions - a special family functions. Under the conditions of positive definite values of the elements of the expansions, the domain of analytic continuation of these functions and their ratios is established. Here, the domain is an open connected set. It is also proven that under the above conditions, every branched continued fraction expansion converges to the function that is holomorphic in a given domain of analytic continuation at least as fast as a geometric series with a ratio less then unity.
References
T. Antonova, C. Cesarano, R. Dmytryshyn, S. Sharyn, An approximation to Appell’s hypergeometric function F2 by branched continued fraction, Dolomites Res. Notes Approx., 17 (2024), 22–31. http://dx.doi.org/10.14658/PUPJ-DRNA-2024-1-3
T. Antonova, R. Dmytryshyn, V. Goran, On the analytic continuation of Lauricella-Saran hypergeometric function FK(a1,a2,b1,b2;a1,b2,c3;mathbfz), Mathematics, 11 (2023), 4487. http://dx.doi.org/10.3390/math11214487
T. Antonova, R. Dmytryshyn, V. Kravtsiv, Branched continued fraction expansions of Horn’s hypergeometric function H3 ratios, Mathematics, 9 (2021), 148. http://dx.doi.org/10.3390/math9020148
T. Antonova, R. Dmytryshyn, P. Kril, S. Sharyn, Representation of some ratios of Horn’s hypergeometric functions H7 by continued fractions, Axioms, 12 (2023), 738. http://dx.doi.org/10.3390/axioms12080738
T. Antonova, R. Dmytryshyn, R. Kurka, Approximation for the ratios of the confluent hypergeometric function Phi(N)D by the branched continued fractions, Axioms, 11 (2022), 426. http://dx.doi.org/10.3390/axioms11090426
T. Antonova, R. Dmytryshyn, S. Sharyn, Generalized hypergeometric function 3F2 ratios and branched continued fraction expansions, Axioms, 10 (2021), 310. http://dx.doi.org/10.3390/axioms10040310
T. Antonova, R. Dmytryshyn, I.-A. Lutsiv, S. Sharyn, On some branched continued fraction expansions for Horn’s hypergeometric function H4(a,b;c,d;z1,z2) ratios, Axioms, 12 (2023), 299. http://dx.doi.org/10.3390/axioms12030299
T. Antonova, R. Dmytryshyn, S. Sharyn, Branched continued fraction representations of ratios of Horn’s confluent function H6, Constr. Math. Anal., 6 (2023), 22–37. http://dx.doi.org/10.33205/cma.1243021
I.B. Bilanyk, D.I. Bodnar, O.G. Vozniak, Convergence criteria of branched continued fractions, Res. Math., 32 (2024), 53–69. http://doi.org/10.15421/242419
D.I. Bodnar, I.B. Bilanyk, Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions, Ukr. Math. Zhurn., 74 (2022), 1155–1169. (in Ukrainian); Engl. transl.: Ukrainian Math. J., 74 (2023), 1317–1333. http://doi.org/10.1007/s11253-023-02138-1
D.I. Bodnar, O.S. Bodnar, I.B. Bilanyk, A truncation error bound for branched continued fractions of the special form on subsets of angular domains, Carpathian Math. Publ., 15 (2023), 437–448. http://doi.org/10.15330/cmp.15.2.437-448
D.I. Bodnar, O.S. Bodnar, M.V. Dmytryshyn, M.M. Popov, M.V. Martsinkiv, O.B. Salamakha, Research on the convergence of some types of functional branched continued fractions, Carpathian Math. Publ., 16 (2024), 448–460. http://doi.org/10.15330/cmp.16.2.448-460
D.I. Bodnar, Branched continued fractions, Naukova Dumka, Kyiv, 1986. (in Russian)
J. Choi, Recent advances in special functions and their applications, Symmetry, 15 (2023), 2159. http://doi.org/10.3390/sym15122159
R. Dmytryshyn, T. Antonova, M. Dmytryshyn, On the analytic extension of the Horn’s confluent function mathrmH6 on domain in the space mathbbC2, Constr. Math. Anal., 7 (2024), 11–26. http://dx.doi.org/10.33205/cma.1545452
R. Dmytryshyn, C. Cesarano, I.-A. Lutsiv, M. Dmytryshyn, Numerical stability of the branched continued fraction expansion of Horn’s hypergeometric function H4, Mat. Stud., 61 (2024), 51–60. http://dx.doi.org/10.30970/ms.61.1.51-60
R. Dmytryshyn, V. Goran, On the analytic extension of Lauricella–Saran’s hypergeometric function FK to symmetric domains, Symmetry, 16 (2024), 220. http://dx.doi.org/10.3390/sym16020220
R. Dmytryshyn, I.-A. Lutsiv, O. Bodnar, On the domains of convergence of the branched continued fraction expansion of ratio H4(a,d+1;c,d;mathbfz)/H4(a,d+2;c,d+1;mathbfz), Res. Math., 31 (2023), 19–26. http://dx.doi.org/10.15421/242311
R. Dmytryshyn, I.-A. Lutsiv, M. Dmytryshyn, C. Cesarano, On some domains of convergence of branched continued fraction expansions of the ratios of Horn hypergeometric functions H4, Ukr. Math. Zhurn., 76 (2024), 502–508. (in Ukrainian); Engl. transl.: Ukrainian Math. J., 76 (2024), 559–565.
http://dx.doi.org/10.1007/s11253-024-02338-3
R. Dmytryshyn, I.-A. Lutsiv, M. Dmytryshyn, On the analytic extension of the Horn’s hypergeometric function H4, Carpathian Math. Publ., 16 (2024), 32–39. http://dx.doi.org/10.15330/cmp.16.1.32-39
R. Dmytryshyn, On the analytic continuation of Appell’s hypergeometric function F2 to some symmetric domains in the space mathbbC2, Symmetry, 16 (2024), 1480. http://dx.doi.org/10.3390/sym16111480
R.I. Dmytryshyn, S.V. Sharyn, Approximation of functions of several variables by multidimensional S-fractions with independent variables, Carpathian Math. Publ., 13 (2021), 592–607. http://dx.doi.org/10.15330/cmp.13.3.592-607
R. Dmytryshyn, S. Sharyn, Representation of special functions by multidimensional A- and J-fractions with independent variables, Fractal Fract., 9 (2025), 89. http://dx.doi.org/10.3390/fractalfract9020089
P.-C. Hang, L. Hu, Full asymptotic expansions of the Humbert function Φ1, arXiv, (2025), arXiv:2504.09280. http://dx.doi.org/10.48550/arXiv.2504.09280
P.-C. Hang, M.-J. Luo, Asymptotics of Saran’s hypergeometric function FK, J. Math. Anal. Appl., 541 (2025), 128707. http://dx.doi.org/10.1016/j.jmaa.2024.128707
V.R. Hladun, D.I. Bodnar, R.S. Rusyn, Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements, Carpathian Math. Publ., 16 (2024), 16–31. http://dx.doi.org/10.15330/cmp.16.1.16-31
V.R. Hladun, M.V. Dmytryshyn, V.V. Kravtsiv, R.S. Rusyn, Numerical stability of the branched continued fraction expansions of the ratios of Horn’s confluent hypergeometric functions H6, Math. Model. Comput., 11 (2024), 1152–1166. http://doi.org/10.23939/mmc2024.04.1152
V.R. Hladun, N.P. Hoyenko, O.S. Manzij, L. Ventyk, On convergence of function F4(1,2;2,2;z1,z2) expansion into a branched continued fraction, Math. Model. Comput., 9 (2022), 767–778. http://dx.doi.org/10.23939/mmc2022.03.767
V. Hladun, V. Kravtsiv, M. Dmytryshyn, R. Rusyn, On numerical stability of continued fractions, Mat. Stud., 62 (2024), 168–183. http://doi.org/10.30970/ms.62.2.168-183
V. Hladun, R. Rusyn, M. Dmytryshyn, On the analytic extension of three ratios of Horn’s confluent hypergeometric function H7, Res. Math., 32 (2024), 60–70. http://dx.doi.org/10.15421/242405
G. Lauricella, Sulle funzioni ipergeometriche a pi`u variabili, Rend. Circ. Matem., 7 (1893), 111–158. http://dx.doi.org/10.1007/BF03012437
Y. Lutsiv, T. Antonova, R. Dmytryshyn, M. Dmytryshyn, On the branched continued fraction expansions of the complete group of ratios of the generalized hypergeometric function 4F3, Res. Math., 32 (2024), 115–132. http://dx.doi.org/10.15421/242423
I. Nyzhnyk, R. Dmytryshyn, T. Antonova, On branched continued fraction expansions of hypergeometric functions FM and their ratios, Modern Math. Methods, 3 (2025), 1–13.
O. Manziy, V. Hladun, L. Ventyk, The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions, Math. Model. Comput., 4 (2017), 48–58. http://dx.doi.org/10.23939/mmc2017.01.048
A. Ryskan, T. Ergashev, On some formulas for the Lauricella function, Mathematics, 11 (2023), 4978. http://dx.doi.org/10.3390/math11244978
Sh. Saran, Transformations of certain hypergeometric functions of three variables, Acta Math., 93 (1955), 293–312. http://dx.doi.org/10.1007/BF02392525
X.-J. Yang, Theory and applications of special functions for scientists and engineers, Springer, Singapore, 2022.
Copyright (c) 2025 R. Dmytryshyn, I. Nyzhnyk

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.