Hayman’s theorem for analytic functions in a complete Reinhardt domain
Abstract
For functions analytic in a complete multiple circular domain G⊂Cn there are established a counterpart of Haymans' Theorem. It specifies that in the definition of boundedness of L-index in joint variables the factorials in the denominator can be removed: An analytic function~F in~G has bounded L-index in joint variables if and only if there exist p∈Z+ and c∈R+ such that for each z∈G max where for K=(k_1,\ldots,k_n)\in\mathbb{Z}^n_+\colon \|K\|=k_1+\ldots +k_n, \displaystyle F^{(K)}(z)=\frac{\partial^{\|K\|} F}{\partial z^{K}}(z)= \frac{\partial^{k_1+k_2+\ldots+k_n}H}{\partial z_1^{k_1}\partial z_2^{k_2}\ldots \partial z_n^{k_n}}(z_1, z_2, \ldots, z_n), \mathbf{L}^{K}(z)=l_1^{k_1}(z)\cdot\ldots \cdot l_n^{k_n}(z), and the continuous mapping \mathbf{L}=(l_1(z),l_2(z),\ldots,l_n(z))\colon \mathbb{G}\to \mathbb{R}^n_+ is locally regularly varying in some sense. It allows to apply this statement in study of local properties of analytic solutions for system of linear higher order partial differential equations. Other result concern estimate of sum of first N expressions from the definition by the sum of all next expressions of such form |F^{(K)}(z)|/(K!\mathbf{L}^{K}(z)), where K!=(k_1,\ldots,k_n) for K=(k_1,\ldots,k_n)\in\mathbb{Z}^n_+, and N is the \mathbf{L}-index in joint variables of the function F.References
V. Baksa, A. Bandura, O. Skaskiv, Growth estimates for analytic vector-valued functions in the unit ball having bounded L-index in joint variables, Constructive Mathematical Analysis, 3 (2020), №1, 9–19. https://doi.org/10.33205/cma.650977
A. Bandura, T. Salo, O. Skaskiv, Analytic functions in a complete Reinhardt domain having bounded L-index in joint variables, Symmetry, 16 (2024), №3, 351. https://doi.org/10.3390/sym16030351
A.I. Bandura, T.M. Salo, Uniform estimates for local properties of analytic functions in a complete Reinahrdt domain, Mat. Stud., 61 (2024), №2, 168–175. https://doi.org/10.30970/ms.61.2.168-175
A. Bandura, M. Martsinkiv, O. Skaskiv, Slice holomorphic functions in the unit ball having a bounded L-index in direction, Axioms, 10 (2021), №1, 4. https://doi.org/10.3390/axioms10010004
A.I. Bandura, Analytic functions in the unit ball of bounded value L-distribution in a direction, Mat. Stud., 49 (2018), №1, 75–79. https://doi.org/10.15330/ms.49.1.75-79
A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstr. Math., 52 (2019), №1, 482–489. https://doi.org/10.1515/dema-2019-0043
A. Bandura, O. Skaskiv, Functions analytic in a unit ball of bounded L-index in joint variables, J. Math. Sci., 227 (2017), №1, 1–12. https://doi.org/10.1007/s10958-017-3570-6
A. Bandura, N. Petrechko, O. Skaskiv, Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman’s theorem, Mat. Bohemica, 143 (2018), №4, 339–354. https://doi.org/10.21136/MB.2017.0110-16
A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47 (2017), №2, 179–184. https://doi.org/10.15330/ms.47.2.179-184
A. Bandura, F. Nuray, Entire bivariate functions of exponential type II, Mat. Stud., 59 (2023), №2, 156–167. https://doi.org/10.30970/ms.59.2.156-167
A.I. Bandura, O.B. Skaskiv, Analytic functions in the unit ball of bounded L-index: asymptotic and local properties, Mat. Stud., 48 (2017), №1, 37–73. doi: 10.15330/ms.48.1.37-73
A.I. Bandura, T.M. Salo, O.B. Skaskiv, Slice holomorphic functions in the unit ball: boundedness of L-index in a direction and related properties, Mat. Stud., 57 (2022), №1, 68–78. https://doi.org/10.30970/ms.57.1.68-78
A.I. Bandura, Application of Hayman’s theorem to directional differential equations with analytic solutions in the unit ball, Stud. Univ. Babes-Bolyai Math., 69 (2024), №2, 335–350. https://doi.org/10.24193/subbmath.2024.2.06
A. Bandura, T. Salo, O. Skaskiv, Non-homogeneous directional equations: slice solutions belonging to functions of bounded L-index in the unit ball, Mathematica Bohemica, 149 (2024), №2, 247–260. https://doi.org/10.21136/MB.2023.0121-22
A. Bandura, T. Salo, O. Skaskiv, Boundedness of the L-index in the direction of composition of slice entire functions and slice holomorphic functions in the unit ball, Ukr. Math. J., 76 (2024), №6, 903–922. https://doi.org/10.1007/s11253-024-02362-3
A.A. Gol’dberg, M.M. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57 (1995), №1, 88–90. https://doi.org/10.1007/BF02309399
W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), №1, 117–137. https://doi.org/10.2140/pjm.1973.44.117
A. Kuryliak, O. Skaskiv, Wiman’s type inequality in multiple-circular domain, Axioms, 10 (2021), №4, 0438. https://doi.org/10.3390/axioms10040348
A.O. Kuryliak, O.B. Skaskiv, Wiman-type inequality in multiple-circular domains: L´evy’s phenomenon and exceptional sets, Ukr. Math. J.,74 (2022), №5, 743–756.https://doi.org/10.1007/s11253-022-02098-y
A. Kuryliak, O. Skaskiv, Entire gaussian functions: probability of zeros absence, Axioms, 12 (2023), №3, 255. https://doi.org/10.3390/axioms12030255
A.O. Kuryliak, I.Ye. Ovchar, O.B. Skaskiv, Wiman’s inequality for the Laplace integrals, International Journal of Mathematical Analysis, 8 (2014), №8, 381–385. http://dx.doi.org/10.12988/ijma.2014.4232
M.M. Sheremeta, Y.S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13 (2021), №2, 413–425. https://doi.org/10.15330/CMP.13.2.413-425.17
M.M. Sheremeta, The Wiman-Valiron method for Dirichlet series, Ukr. Math. J., 30 (1978), №4, 376–383. https://doi.org/10.1007/BF01085861
Copyright (c) 2025 T. M. Salo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.