On the transfinite density of sequences and its applications to Dirichlet series
Abstract
For an increasing to ∞ sequence (λn) of positive numbers let n(t)=∑λn≤t1, N(x)=∫x0n(t)tdt, Lk(t)=∑λn≤tk−1∏j=01lnjλn for k≥1 and t≥tk=expk(0), where lnjx is the j-th iteration of the logarithm and expk(x) is the k-th iteration of the exponent. The quantities D(0)=¯limt→+∞n(t)t and ¯D∗=¯limt→+∞1t∫t0n(x)xdx are called the upper density and upper average density of (λn) respectively. Moreover, let Dk(0)=¯limt→+∞Lk(t)lnkt be the upper k-logarithmic density and D=lim be the maximal transfinite density of (\lambda_n).
In the works of many authors devoted to lacunary power series and
Dirichlet series, estimates of the canonical product \Lambda(z)=\prod\limits_{n=0}^{\infty}1+z^2/\lambda^2_n) are used, which is an entire function if D(0)<+\infty.
Here various properties of k-logarithmic densities are studied and the estimate \displaystyle\varlimsup\limits_{r\to+\infty}\frac{\ln \Lambda(r)}{r}\le \pi D is proved. This allows us to replace
\overline{D}^* with D in many results of G. Polya, S. Mandelbrojt and other authors.
References
G. Polya, Untersuchungen uber Lucken and Singularitaten von Potenzreihen, Math. Z., 29 (1929), 549–640.
M.M. Sheremeta, On k-logarithmic density of sequence and its applications to entire functions, I. Teor. Funkts. Funkts. Anal. Prilozh., 25 (1976), 131–142. (in Russian) https://ekhnuir.karazin.ua/handle/123456789/16410
M.M. Sheremeta, On k-logarithmic density of sequence and its applications to entire functions, II. Teor. Funkts. Funkts. Anal. Prilozh., 25 (1976), 142–156. (in Russian) https://ekhnuir.karazin.ua/handle/123456789/16411
A. Pfluger, G. Polya, On the power series of an integral function having an exceptional value, Proc. Cambridge Phil. Soc., 31 (1935), 153–155.
R. Fejer, Uber die Wurzel von kleinsten absoluten Betrage einer algebraischen Gleichung, Math. Ann., 65 (1908), 413–423.
T. Murai, The deficiency of entire functions with Fejer gaps, Ann. Inst. Fourier, Grenoble, 33 (1983),№3, 39–58. http://www.numdam.org/item?id=AIF_1983__33_3_39_0
S. Mandelbrojt, Series adherentes. Regularisation des suites. Applications, Gauthier-Villars, Paris, 1952.
A.F Leont’ev, Series of exponents, Moscow, Nauka, 1976.
B.V. Vinnitskii, M.M. Sheremeta, Asymptotic properties of the coefficients of Dirichlet series representing entire functions, Ukr. Math. J., 27 (1975), №2, 117–124. https://doi.org/10.1007/BF01089992
Copyright (c) 2025 M. M. Sheremeta

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.