Exact Constant of Approximation of Periodic Functions by Cesaro Means
Abstract
In the paper, we present new findings concerning Cesaro-type operators. Special attention is given to the Cesaro \((C, \alpha)\) summation operators, which form a widely used family of summation methods in Fourier analysis. We establish sharp inequality for the upper bound of uniform deviations of Cesaro \((C, \alpha)\) summation operators of the second order for the class of continuous periodic functions. Let $n\in \mathbb N$ and $\displaystyle x_k^{(n)} = x_{k-1}^{(n)} + {2\pi}/{(2n+1)},$\ $k\in\{ 0, \pm1, \ldots, \pm(n-1), n\},$ be the points from the interval $[-\pi, \pi]$ such that $\displaystyle -\pi \leq x_{-n}^{(n)} < x_{-n+1}^{(n)} < \ldots < x_{-1}^{(n)} < x_0^{(n)} < x_1^{(n)} < \ldots < x_n^{(n)} \leq \pi;$ the set of points $\{x_k^{(n)}\}$ is uniquely determined by the value of $x_0^{(n)}$. The Ces\`{a}ro $(C, \alpha)$ summation operators are defined by $\displaystyle \sigma_n^{(\alpha)}[f]\left( \left\{x_k^{(n)}\right\}; x\right) = \frac{2}{2 n+1} \sum_{k=-n}^n f\left(x_k^{(n)}\right) K_n^{\alpha}\left(x - x_k^{(n)}\right),$ $K_n^{(\alpha)}(t)=\frac{1}{A_n^\alpha}\sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} D_\nu (t),$ where $ D_\nu(t)=\frac{\sin\left(\left(\nu+{1}/{2}\right)t\right)}{2 \sin\left(t/2\right)}$ is the Dirichlet kernel, and $ A_n^\alpha = \frac{(\alpha + 1) \ldots (\alpha + n)}{n!}$ $(n \in \mathbb N),$\ $A_0^\alpha = 1,$\ are the Cesaro numbers, $\alpha > -1$. Let $\mathbb{T} = [-\pi, \pi]$ and $\mathrm C(\mathbb T)$ be the space of continuouson $\mathbb{T}$ functions with the norm $\|f\|_{\mathrm C} = \max\{|f(t)|\colon t\in \mathbb T\}.$ The main result is contained in the following statement (Theorem 1): Let $f\in \mathrm C(\mathbb T)$. Then the inequality $$ \left\|f - \sigma^{(2)}_n[f]\left(\left\{x_k^{(n)}\right\}\right)\right\|_{\mathrm C} \leq \frac{11}{9\ln2}\cdot \ln(n+1) \cdot\omega\left(f; {2\pi}/{(2n+1)}\right),\ n\in \mathbb N, $$ holds. The constant ${11}/{(9\ln2)}$ in this inequality is sharp.References
T. Akhobadze,On the generalized Ces`aro means of trigonometric Fourier series, Bulletin of TICMI,18(2014), No1, 75–84.
H. Berens, Y. Xu,l−1summability of multiple Fourier integrals and positivity, Math. Proc. Camb. Phil.Soc.,122(1997), No1, 149–172.
V.P. Bugaets, V.T. Martynyuk,Exact constants of approximation of continuous functions by Jacksonintegrals, Ukr. Math. J.,26(1974), No4, 357–364. https://doi.org/10.1007/BF01085608
V.P. Bugaets, V.T. Martynyuk,Exact constant for approximation of continuous functions by summationoperators of Jackson type, Ukr. Math. J.,29(1977), No6, 586—590. https://doi.org/10.1007/BF01085966
P.L. Butzer, R.J. Nessel, Fourier analysis and approximation, V.I,II, New York–London, Academic Press,1971.
U. De ̆ger, M. K ̈u ̧cukaslan,A generalization of deferred Cesaro means and some of their applications, J.Inequal. Appl.,2015, 14. https://doi.org/10.1186/s13660-014-0532-0
G. G`at, U. Goginava,Ces`aro means with varying parameters of Walsh-Fourier series, Period. Math.Hung.,87(2023), 57–74.
U. Goginava,On the approximation properties of Cesaro means of negative order of Walsh-Fourier series,J. Approx. Theory.,115(2002), No1, 9–20.
A. Guven, V. Kokilashvili,On the mean summability by Cesaro method of Fourier trigonometric seriesin two-weighted setting, J. Inequal. Appl.,2006, 41837. https://doi.org/10.1155/JIA/2006/41837
L. Fej ́er,Untersuchungen iiber Fouriersche Reihen, Math. Ann.,58(1904), 501–569.
V.T. Gavrilyuk,Approximation of continuous periodic functions of one or two variables by Rogozinskipolynomials of interpolation type, Ukr. Math. J.,25(1973), No5, 530–537.https://doi.org/10.1007/BF01091946
Y. Katznelson, An introduction to harmonic analysis, Cambridge, Univ. Press, 2004.
L. Leindler,On the degree of approximation of continuous functions, Acta Math. Hungar.,104(2004),106–113.
L. Leindler,Necessary and sufficient conditions for uniform convergence of boundedness of general classof sine series, Aust. J. Math. Anal. Appl.,4(2007), 10.
D. Leladze,On some properties of multiple conjugate trigonometric series, Georgian Math. J.,1, (1994),No3, 287–302.
V.T. Martynyuk,Best constants for approximations of periodic functions by Fej ́er operators, Ukr. Math.J.,42(1990), No1, 66–74. https://doi.org/10.1007/BF01066366
F. Moricz, X. Shi,Approximation to continuous functions by Cesaro means of double fourier series andconjugate series, J. Approx. Theory,49(1987), 346–317.
O.G. Rovenska,An exact constant on the estimation of the approximation of classes of periodic functionsof two variables by Ces`aro means, Mat. Stud.,57(2022), No1, 3–9. https://doi.org/10.30970/ms.57.1.3-9
O. Rovenska,Exact constants in estimates of approximation of Lipschitz classes of periodic functions byCes`aro means, Math. Inequal. Appl.,26(2023), No4, 851–859.
M. Riesz,Sur la sommation des series de Fourier, Acta Sci. Math. (Szeged),1(1923), 104–113.
F. Schurer, F. Steutel,On the degree of approximation by the operators of de la Vallee Poussin, Monatsh.Math.,87(1979), 53–64.
F. Schurer, F. Steutel,On the degree of approximation of functions inC12πwith operators of the Jacksontype, J. of Approx. Theory,27(1979), 153–178.
P. Simon, F. Wesz,Weak inequalities for Ces`aro and Riesz summability of Walsh-Fourier series,J. Approx. Theory,151(2008), No1, 1–19.
M.V. Singh, M.L. Mittal,Approximation of functions in Besov space by deferred Ces`aro mean, J. Inequal.Appl.,2016(2016), 118.
A.F. Timan, Theory of approximation of functions of a real variable, New York, Pergamon Press, 1963.
V. Totik,On the strong approximation by(C,α)-means of Fourier series.I, Anal. Math.,6(1980),57–85.
V. Totik,On the strong approximation by(C,α)-means of Fourier series.II, Anal. Math.,6(1980),165–184.
D. Tsirekidze,Estimate of the approximation of periodic functions by negative Ces`aro means, Acta Math.Hung.,127(2010), 207–219.
Wang Xing-hua,The exact constant of approximation of continuous functions by the Jackson singularintegral, Acta Math. Sinica,14(1964), No2, 231–237.
F. Weisz,Convergence of summability means of higher dimensional Fourier series and Lebesgue points,Acta Math. Hungar.,175(2025), 270–285.
A. Zygmund,Sur la sommabilite des s ́eries de Fourier des fonctions v ́erifiant la condition de Lipschitz,Bull. de l’Acad. Polonaise, 1925, 1–9.
A. Zygmund, Trigonometric series, I., Cambridge, University Press, 1959.33. A. Zygmund, Trigonometric series, II., Cambridge, University Press, 1959.
Copyright (c) 2025 O. Rovenska

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.