Bounds on Hermitian-Toeplitz determinant for starlike, convex and bounded turning functions associated with the exponential function
Abstract
In the article we derive sharp bounds for the third-order Hermitian-Toeplitz determinant of starlike and convex functions associated with the exponential function, as well as for their inverse classes. An analytic in the unit disk $\mathbb{D}=\{z\colon |z|<1\}$ function $f$ is said to be subordinate to an analyic in $\mathbb{D}$ function $g$ (denoted by $f \prec g$), if there exists an analytic in $\mathbb{D}$ function $w$ with $|w(z)| \leq |z|$ and $w(0) = 0$ such that $f(z) = g(w(z))$. Let $\mathcal{A}$ be the class of analytic functions $f$ in $\mathbb{D}$ of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$\ $z \in \mathbb{D},$ and $\mathcal{S}^{\ast}_{e}$ be the class of functions $f \in \mathcal{A}$ such that ${z f'(z)}/{f(z)} \prec e^z.$ In particular, the following statement has been proven (Theorem 1): If $f \in \mathcal{S}^{\ast}_{e}$, then $-\frac{1}{15}\leq T_{3,1}(f) \leq 1$, where $T_{3,1}(f)$ is the third-order Hermitian-Toeplitz determinant of the form $T_{3,1}(f) := 2 \, \Re\!\left(a_{2}^{2}\cdot\overline{a_{3}}\right) - 2|a_{2}|^{2} - |a_{3}|^{2} + 1.$ The upper and lower bounds are sharp. The article also obtained similar (sharp) estimates in the class $\displaystyle \mathcal{C}_{e} := \Big\{ f \in \mathcal{A} \colon 1 + \frac{z f''(z)}{f'(z)} \prec e^z \Big\}\colon \quad \frac{9}{16}\leq T_{3,1}(f) \leq 1\quad$ (Theorem 2), and in the class $\displaystyle \mathcal{R}_e:=\left\{ f'(z)\prec e^z \right\}\colon \quad \frac{5}{9}\leq T_{3,1}(f) \leq 1\quad$ (Theorem 3).References
M.F. Ali, D.K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), No2, 253–264.
K. Cudna, O.S. Kwon, A. Lecko, Y.J. Sim, B. Smiarowska, The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α, Bol. Soc. Mat. Mex. (3), 26 (2020), No2, 361–375.
P. Hartman, A. Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math., 76 (1954), 867–882.
A.W. Goodman, Univalent functions, Mariner Publishing Company, Inc., Tampa, Florida, 1983.
W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, 1994, 157–169.
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), No1, 365–386.
D. Kucerovsky, K. Mousavand, A. Sarraf, On some properties of Toeplitz matrices, Cogent Mathematics, 3 (2016), 1154705.
V. Kumar, R. Srivastava, N.E. Cho, Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions, Miskolc Math. Notes, 21 (2020), No2, 939–952.
S. Kumar, R.K. Pandey, P. Rai, Sharp bounds on Hankel and Hermitian-Toeplitz determinants of associated Sakaguchi functions, Lith. Math. J., 64 (2024), 491–506.
R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), No2, 251–257.
Copyright (c) 2025 Nabadwip Sarkar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.