On entire Dirichlet series similar to Hadamard compositions

  • O.M. Mulyava Kyiv National University of Food Technologies Kyiv, Ukraine
  • M. M. Sheremeta Ivan Franko National University of Lviv, Lviv
Keywords: Dirichlet series, Hadamard composition, generalized order, convergence class.

Abstract

A function F(s)=n=1anexp{sλn} with 0λn+ is called the Hadamard composition of the genus m1 of functions Fj(s)=n=1an,jexp{sλn} if an=P(an,1,...,an,p), where
P(x1,...,xp)=k1++kp=mck1...kpxk11...xkpp is a homogeneous polynomial of degree m1. Let M(σ,F)=sup{|F(σ+it)|:tR} and functions α,β be positive continuous and increasing to + on
[x0,+). To characterize the growth of the function M(σ,F), we use generalized order ϱα,β[F]=¯limσ+α(lnM(σ,F))β(σ), generalized type
Tα,β[F]=¯limσ+lnM(σ,F)α1(ϱα,β[F]β(σ))
and membership in the convergence class defined by the condition
σ0lnM(σ,F)σα1(ϱα,β[F]β(σ))dσ<+.

Assuming the functions α,β and α1(cβ(lnx)) are slowly increasing for each c(0,+) and lnn=O(λn) as n, it is proved, for example, that if the functions Fj have the same generalized order ϱα,β[Fj]=ϱ(0,+) and the types Tα,β[Fj]=Tj[0,+), cm0...0=c0, |an,1|>0 and |an,j|=o(|an,1|) as n for 2jp, and F is the Hadamard composition of genus
m1 of the functions Fj then ϱα,β[F]=ϱ and
Tα,β[F]k1++kp=m(k1T1+...+kpTp).
It is proved also that F belongs to the generalized convergence class if and only if
all functions Fj belong to the same convergence class.

Author Biographies

O.M. Mulyava, Kyiv National University of Food Technologies Kyiv, Ukraine

Kyiv National University of Food Technologies Kyiv, Ukraine

M. M. Sheremeta, Ivan Franko National University of Lviv, Lviv

Department of Mechanics and Mathematics, Professor

References

Mulyava O.M., Sheremeta M.M. Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes // Mat. Stud. – 2019. – V. 51, №1. – P. 25–34.

Hadamard J. Theoreme sur le series entieres // Acta math. – 1899. – Bd. 22. – S. 55–63.

Hadamard J. La serie de Taylor et son prolongement analitique // Scientia phys.-math. – 1901. – №12. – P. 43–62.

Bieberbach L. Analytische Fortzetzung. – Berlin, 1955.

Calys E.G. A note on the order and type of integral functions // Riv. Mat. Univer. Parma (2). – 1964. – V. 5. – P. 133–137.

Kulyavetc’ L.V., Mulyava O.M. On the growth of a class of entire Dirichlet series // Carpathian Math. Publ. – 2014. – V. 6, №2. – P. 300–309.(in Ukrainian)

Sheremeta M.M. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion // Izv. Vyssh. Uchebn. Zaved. Mat. – 1967 – №2. – P. 100–108.(in Russian)

Sheremeta M.M. Entire Dirichlet series. – Kyiv: ISDO. – 1993, 168 p. (in Ukrainian)

Leont’ev A.F. Series of exponents. – M.: Nauka, 1976. – 536 p. (in Russian)

Ritt J.F. On certain points in the theory of Dirichlet series // Amer. Math. J. – 1928. – V. 50. – P. 73–83.

Azpeitia A.G. On the lower linear type of entire functions defined by Dirichlet series // Bull. Unione Mat. Ital. – 1978. – V. A15, №3. – P. 635–638.

Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of entire functions // Mat. Stud. – 2003. – V. 19, №1. – P. 75–82.

Sheremeta M.M., Fedynyak S.I. On the derivative of a Dirichlet series // Sibirsk. mat. journ. – 1998. – V. 39, №1. – P. 206–223. (in Russian)

Mulyava O.M., Sheremeta M.M. Convergence classes of analytic functions. – Kyiv: Publ. Lira K., 2020. – 196 p.

Valiron G. General theory of integral functions. – Toulouse, 1923.

Kamthan P.K. A theorem of step functions. II // Instambul univ. fen. fac. mecm. A. – 1963. – V. 28. – P. 65–69.

Mulyava O.M. On convergence classes of Dirichlet series // Ukr. Math. Journ. – 1999. – V. 51, №1. – P. 1485–1494. (in Ukrainian)

Published
2023-06-23
How to Cite
Mulyava, O., & Sheremeta, M. M. (2023). On entire Dirichlet series similar to Hadamard compositions. Matematychni Studii, 59(2), 132-140. https://doi.org/10.30970/ms.59.2.132-140
Section
Articles