On entire Dirichlet series similar to Hadamard compositions
Abstract
A function F(s)=∑∞n=1anexp{sλn} with 0≤λn↑+∞ is called the Hadamard composition of the genus m≥1 of functions Fj(s)=∑∞n=1an,jexp{sλn} if an=P(an,1,...,an,p), where
P(x1,...,xp)=∑k1+⋯+kp=mck1...kpxk11⋅...⋅xkpp is a homogeneous polynomial of degree m≥1. Let M(σ,F)=sup{|F(σ+it)|:t∈R} and functions α,β be positive continuous and increasing to +∞ on
[x0,+∞). To characterize the growth of the function M(σ,F), we use generalized order ϱα,β[F]=¯limσ→+∞α(lnM(σ,F))β(σ), generalized type
Tα,β[F]=¯limσ→+∞lnM(σ,F)α−1(ϱα,β[F]β(σ))
and membership in the convergence class defined by the condition
∫∞σ0lnM(σ,F)σα−1(ϱα,β[F]β(σ))dσ<+∞.
Assuming the functions α,β and α−1(cβ(lnx)) are slowly increasing for each c∈(0,+∞) and lnn=O(λn) as n→∞, it is proved, for example, that if the functions Fj have the same generalized order ϱα,β[Fj]=ϱ∈(0,+∞) and the types Tα,β[Fj]=Tj∈[0,+∞), cm0...0=c≠0, |an,1|>0 and |an,j|=o(|an,1|) as n→∞ for 2≤j≤p, and F is the Hadamard composition of genus
m≥1 of the functions Fj then ϱα,β[F]=ϱ and
Tα,β[F]≤∑k1+⋯+kp=m(k1T1+...+kpTp).
It is proved also that F belongs to the generalized convergence class if and only if
all functions Fj belong to the same convergence class.
References
Mulyava O.M., Sheremeta M.M. Compositions of Dirichlet series similar to the Hadamard compositions, and convergence classes // Mat. Stud. – 2019. – V. 51, №1. – P. 25–34.
Hadamard J. Theoreme sur le series entieres // Acta math. – 1899. – Bd. 22. – S. 55–63.
Hadamard J. La serie de Taylor et son prolongement analitique // Scientia phys.-math. – 1901. – №12. – P. 43–62.
Bieberbach L. Analytische Fortzetzung. – Berlin, 1955.
Calys E.G. A note on the order and type of integral functions // Riv. Mat. Univer. Parma (2). – 1964. – V. 5. – P. 133–137.
Kulyavetc’ L.V., Mulyava O.M. On the growth of a class of entire Dirichlet series // Carpathian Math. Publ. – 2014. – V. 6, №2. – P. 300–309.(in Ukrainian)
Sheremeta M.M. Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion // Izv. Vyssh. Uchebn. Zaved. Mat. – 1967 – №2. – P. 100–108.(in Russian)
Sheremeta M.M. Entire Dirichlet series. – Kyiv: ISDO. – 1993, 168 p. (in Ukrainian)
Leont’ev A.F. Series of exponents. – M.: Nauka, 1976. – 536 p. (in Russian)
Ritt J.F. On certain points in the theory of Dirichlet series // Amer. Math. J. – 1928. – V. 50. – P. 73–83.
Azpeitia A.G. On the lower linear type of entire functions defined by Dirichlet series // Bull. Unione Mat. Ital. – 1978. – V. A15, №3. – P. 635–638.
Sheremeta M.M. On two classes of positive functions and belonging to them of main characteristics of entire functions // Mat. Stud. – 2003. – V. 19, №1. – P. 75–82.
Sheremeta M.M., Fedynyak S.I. On the derivative of a Dirichlet series // Sibirsk. mat. journ. – 1998. – V. 39, №1. – P. 206–223. (in Russian)
Mulyava O.M., Sheremeta M.M. Convergence classes of analytic functions. – Kyiv: Publ. Lira K., 2020. – 196 p.
Valiron G. General theory of integral functions. – Toulouse, 1923.
Kamthan P.K. A theorem of step functions. II // Instambul univ. fen. fac. mecm. A. – 1963. – V. 28. – P. 65–69.
Mulyava O.M. On convergence classes of Dirichlet series // Ukr. Math. Journ. – 1999. – V. 51, №1. – P. 1485–1494. (in Ukrainian)
Copyright (c) 2023 O.M. Mulyava, M. M. Sheremeta

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.